2019-11-04 16:41:08 +01:00
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
2019-11-04 09:12:41 +01:00
<rss version= "2.0" xmlns:atom= "http://www.w3.org/2005/Atom" >
<channel >
2019-11-04 11:59:09 +01:00
<title > abdulocracy' s personal site</title>
2019-11-09 16:48:31 +01:00
<link > https://abdulocra.cy/</link>
2019-11-04 11:59:09 +01:00
<description > Recent content on abdulocracy' s personal site</description>
2019-11-04 09:12:41 +01:00
<generator > Hugo -- gohugo.io</generator>
<language > en-us</language>
2019-11-04 11:59:09 +01:00
<copyright > © Abdulkadir Furkan Şanlı 2019</copyright>
2020-06-10 13:16:54 +02:00
<lastBuildDate > Wed, 20 Nov 2019 00:00:00 +0000</lastBuildDate>
2019-11-04 09:12:41 +01:00
2019-11-09 16:48:31 +01:00
<atom:link href= "https://abdulocra.cy/index.xml" rel= "self" type= "application/rss+xml" />
2019-11-04 09:12:41 +01:00
2019-12-26 01:05:22 +01:00
<item >
<title > about</title>
<link > https://abdulocra.cy/about/</link>
2020-06-10 13:16:54 +02:00
<pubDate > Wed, 10 Jun 2020 00:00:00 +0000</pubDate>
2019-12-26 01:05:22 +01:00
<guid > https://abdulocra.cy/about/</guid>
2020-06-10 13:16:54 +02:00
<description > name: Abdulkadir Furkan Şanlı handle: abdulocracy contact: email: me at abdulocra dot cy gpg: 0xEE6ED1FE irc (freenode): abdulocracy </description>
2019-12-26 01:05:22 +01:00
</item>
2019-11-04 09:12:41 +01:00
<item >
2019-11-04 10:28:34 +01:00
<title > Introduction to Discrete Mathematics</title>
2019-11-09 16:48:31 +01:00
<link > https://abdulocra.cy/posts/eidma/</link>
2019-11-20 11:07:13 +01:00
<pubDate > Wed, 20 Nov 2019 00:00:00 +0000</pubDate>
2019-11-04 09:12:41 +01:00
2019-11-09 16:48:31 +01:00
<guid > https://abdulocra.cy/posts/eidma/</guid>
2019-12-17 16:32:27 +01:00
<description > Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false.
We should avoid variables when forming statements, as they may change the logical value.
\(2=7\) statement \(x=5\) not a statement In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.</description>
2019-11-04 09:12:41 +01:00
</item>
</channel>
</rss>