Do first proper configuration
This commit is contained in:
		
							
								
								
									
										32
									
								
								config.toml
									
									
									
									
									
								
							
							
						
						
									
										32
									
								
								config.toml
									
									
									
									
									
								
							@@ -1,6 +1,6 @@
 | 
				
			|||||||
baseURL = "https://022385.xyz/"
 | 
					baseURL = "https://022385.xyz/"
 | 
				
			||||||
languageCode = "en-us"
 | 
					languageCode = "en-us"
 | 
				
			||||||
title = "My New Hugo Site"
 | 
					title = "abdulocracy"
 | 
				
			||||||
baseurl = "/"
 | 
					baseurl = "/"
 | 
				
			||||||
theme = "terminal"
 | 
					theme = "terminal"
 | 
				
			||||||
paginate = 5
 | 
					paginate = 5
 | 
				
			||||||
@@ -9,39 +9,39 @@ paginate = 5
 | 
				
			|||||||
  # dir name of your blog content (default is `content/posts`)
 | 
					  # dir name of your blog content (default is `content/posts`)
 | 
				
			||||||
  contentTypeName = "posts"
 | 
					  contentTypeName = "posts"
 | 
				
			||||||
  # ["orange", "blue", "red", "green", "pink"]
 | 
					  # ["orange", "blue", "red", "green", "pink"]
 | 
				
			||||||
  themeColor = "orange"
 | 
					  themeColor = "pink"
 | 
				
			||||||
  # if you set this to 0, only submenu trigger will be visible
 | 
					  # if you set this to 0, only submenu trigger will be visible
 | 
				
			||||||
  showMenuItems = 2
 | 
					  showMenuItems = 0
 | 
				
			||||||
  # show selector to switch language
 | 
					  # show selector to switch language
 | 
				
			||||||
  showLanguageSelector = false
 | 
					  showLanguageSelector = false
 | 
				
			||||||
  # set theme to full screen width
 | 
					  # set theme to full screen width
 | 
				
			||||||
  fullWidthTheme = false
 | 
					  fullWidthTheme = false
 | 
				
			||||||
  # center theme with default width
 | 
					  # center theme with default width
 | 
				
			||||||
  centerTheme = false
 | 
					  centerTheme = true
 | 
				
			||||||
  # set a custom favicon (default is a `themeColor` square)
 | 
					  # set a custom favicon (default is a `themeColor` square)
 | 
				
			||||||
  # favicon = "favicon.ico"
 | 
					  favicon = "favicon.png"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
[languages]
 | 
					[languages]
 | 
				
			||||||
  [languages.en]
 | 
					  [languages.en]
 | 
				
			||||||
    languageName = "English"
 | 
					    languageName = "English"
 | 
				
			||||||
    title = "Terminal"
 | 
					    title = "abdulocracy's personal site"
 | 
				
			||||||
    subtitle = "A simple, retro theme for Hugo"
 | 
					    subtitle = ""
 | 
				
			||||||
    keywords = ""
 | 
					    keywords = ""
 | 
				
			||||||
    copyright = ""
 | 
					    copyright = "© Abdulkadir Furkan Şanlı 2019"
 | 
				
			||||||
    menuMore = "Show more"
 | 
					    menuMore = "≡"
 | 
				
			||||||
    readMore = "Read more"
 | 
					    readMore = "read more"
 | 
				
			||||||
    readOtherPosts = "Read other posts"
 | 
					    readOtherPosts = "read other posts"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    [languages.en.params.logo]
 | 
					    [languages.en.params.logo]
 | 
				
			||||||
      logoText = "Terminal"
 | 
					      logoText = "abdulocracy"
 | 
				
			||||||
      logoHomeLink = "/"
 | 
					      logoHomeLink = "/"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    [languages.en.menu]
 | 
					    [languages.en.menu]
 | 
				
			||||||
      [[languages.en.menu.main]]
 | 
					      [[languages.en.menu.main]]
 | 
				
			||||||
        identifier = "about"
 | 
					        identifier = "about"
 | 
				
			||||||
        name = "About"
 | 
					        name = "about"
 | 
				
			||||||
        url = "/about"
 | 
					        url = "/about"
 | 
				
			||||||
      [[languages.en.menu.main]]
 | 
					      [[languages.en.menu.main]]
 | 
				
			||||||
        identifier = "showcase"
 | 
					        identifier = "uni-notes"
 | 
				
			||||||
        name = "Showcase"
 | 
					        name = "university notes"
 | 
				
			||||||
        url = "/showcase"
 | 
					        url = "/tags/university-notes"
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										13
									
								
								content/about.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										13
									
								
								content/about.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,13 @@
 | 
				
			|||||||
 | 
					---
 | 
				
			||||||
 | 
					title: "about"
 | 
				
			||||||
 | 
					date: 2019-11-04T11:14:55+01:00
 | 
				
			||||||
 | 
					draft: false
 | 
				
			||||||
 | 
					---
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<image src="../face.jpg" width="173" height="150" />
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- name: Abdulkadir Furkan Şanlı
 | 
				
			||||||
 | 
					- handle: abdulocracy
 | 
				
			||||||
 | 
					- contact:
 | 
				
			||||||
 | 
						- email: my handle at disroot dot org
 | 
				
			||||||
 | 
						- irc (freenode): abdulocracy
 | 
				
			||||||
							
								
								
									
										
											BIN
										
									
								
								content/face.jpg
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								content/face.jpg
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 102 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								content/favicon.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								content/favicon.png
									
									
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 138 KiB  | 
@@ -1,15 +1,12 @@
 | 
				
			|||||||
+++
 | 
					+++
 | 
				
			||||||
title = "Introduction to Discrete Mathematics"
 | 
					title = "Introduction to Discrete Mathematics"
 | 
				
			||||||
date = "2019-03-26T08:47:11+01:00"
 | 
					date = "2019-11-04"
 | 
				
			||||||
author = "abdul"
 | 
					author = "Abdulkadir"
 | 
				
			||||||
showFullContent = false
 | 
					showFullContent = false
 | 
				
			||||||
tags = ["university-notes", ""]
 | 
					tags = ["university-notes"]
 | 
				
			||||||
markup = "mmark"
 | 
					markup = "mmark"
 | 
				
			||||||
+++
 | 
					+++
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Discrete mathematics
 | 
					 | 
				
			||||||
====================
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
- Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.
 | 
					- Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Propositional calculus
 | 
					## Propositional calculus
 | 
				
			||||||
@@ -18,17 +15,21 @@ Discrete mathematics
 | 
				
			|||||||
- We should avoid variables when forming statements, as they may change the logical value.
 | 
					- We should avoid variables when forming statements, as they may change the logical value.
 | 
				
			||||||
	- $$2=7$$ statement
 | 
						- $$2=7$$ statement
 | 
				
			||||||
	- $$x=5$$ not a statement
 | 
						- $$x=5$$ not a statement
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- In logic we do not use the equals sign, we use the equivalence sign $$\equiv$$.
 | 
					- In logic we do not use the equals sign, we use the equivalence sign $$\equiv$$.
 | 
				
			||||||
- Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).
 | 
					- Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).
 | 
				
			||||||
- When doing logic, we use propositional variables (e.g. p, q, r).
 | 
					- When doing logic, we use propositional variables (e.g. p, q, r).
 | 
				
			||||||
	- Can be either **true** or **false**.
 | 
						- Can be either **true** or **false**.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- The operations done on propositional variables are called propositional connectives.
 | 
					- The operations done on propositional variables are called propositional connectives.
 | 
				
			||||||
	1. Conjunction: $$p \land q$$ is only true if both p and q are true $$(0001)$$
 | 
						- Conjunction: $$p \land q$$ is only true if both p and q are true $$(0001)$$
 | 
				
			||||||
	2. Disjunction: $$p \lor q$$ is only false if both p and q are false $$(0111)$$
 | 
						- Disjunction: $$p \lor q$$ is only false if both p and q are false $$(0111)$$
 | 
				
			||||||
	3. Implication (material conditional): $$p \implies q$$ is false only if p is true and q is false (truth table $$(1011)$$)
 | 
						- Implication (material conditional): $$p \implies q$$ is false only if p is true and q is false (truth table $$(1011)$$)
 | 
				
			||||||
		- $$\equiv \neg p \lor q$$
 | 
							- $$\equiv \neg p \lor q$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Not necessarily connectives but unary operations:
 | 
					- Not necessarily connectives but unary operations:
 | 
				
			||||||
	1. Negation: Denoted by ~, $$\neg$$ or NOT, negates the one input $$(10)$$.
 | 
						- Negation: Denoted by ~, $$\neg$$ or NOT, negates the one input $$(10)$$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- A (propositional) formula is a "properly constructed" logical expression.
 | 
					- A (propositional) formula is a "properly constructed" logical expression.
 | 
				
			||||||
	- e.g. $$\neg[(p \lor q)] \land r$$
 | 
						- e.g. $$\neg[(p \lor q)] \land r$$
 | 
				
			||||||
	- $$(p \land)$$ is not a formula, as $$\land$$ requires 2 variables.
 | 
						- $$(p \land)$$ is not a formula, as $$\land$$ requires 2 variables.
 | 
				
			||||||
@@ -38,6 +39,7 @@ Discrete mathematics
 | 
				
			|||||||
	- Distributivity: $$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
 | 
						- Distributivity: $$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
 | 
				
			||||||
	- Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
 | 
						- Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
 | 
				
			||||||
		- $$\neg(B \lor C)$$ can be written as $$\neg B \land \neg C$$
 | 
							- $$\neg(B \lor C)$$ can be written as $$\neg B \land \neg C$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Double negation law: $$\neg(\neg p) \equiv p$$
 | 
					- Double negation law: $$\neg(\neg p) \equiv p$$
 | 
				
			||||||
- De Morgan's laws: $$\neg(p \land q) \equiv \neg p \lor \neg q$$ and $$\neg(p \lor q) \equiv \neg p \land \neg q$$.
 | 
					- De Morgan's laws: $$\neg(p \land q) \equiv \neg p \lor \neg q$$ and $$\neg(p \lor q) \equiv \neg p \land \neg q$$.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -46,8 +48,10 @@ Discrete mathematics
 | 
				
			|||||||
	- $$(p \implies q) \equiv (\neg q \implies \neg p)$$ prove by contraposition
 | 
						- $$(p \implies q) \equiv (\neg q \implies \neg p)$$ prove by contraposition
 | 
				
			||||||
		- $$(p \implies q) \equiv (\neg p \lor q)$$
 | 
							- $$(p \implies q) \equiv (\neg p \lor q)$$
 | 
				
			||||||
		- $$(\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)$$
 | 
							- $$(\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	- Contradiction law:
 | 
						- Contradiction law:
 | 
				
			||||||
		- $$p \lor \neg p \equiv 1$$ and $$p \land \neg p \equiv 0$$
 | 
							- $$p \lor \neg p \equiv 1$$ and $$p \land \neg p \equiv 0$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Tautology: $$\phi (p, q, ... r)$$ is a tautology *iff* $$\phi \equiv 1$$
 | 
					- Tautology: $$\phi (p, q, ... r)$$ is a tautology *iff* $$\phi \equiv 1$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Sets
 | 
					## Sets
 | 
				
			||||||
@@ -55,23 +59,27 @@ Discrete mathematics
 | 
				
			|||||||
	- $$2^\mathbb X = \{ A : A \subseteq \mathbb X\}$$
 | 
						- $$2^\mathbb X = \{ A : A \subseteq \mathbb X\}$$
 | 
				
			||||||
	- $$2^\mathbb X = P(\mathbb X)$$
 | 
						- $$2^\mathbb X = P(\mathbb X)$$
 | 
				
			||||||
	- All 2 object subsets of $$\mathbb X$$:  $$P_2(\mathbb X)$$
 | 
						- All 2 object subsets of $$\mathbb X$$:  $$P_2(\mathbb X)$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- $$A \subset B \equiv$$ every element of A is an element of B $$\equiv \{x \in \mathbb X : x \in A \implies x \in B\}$$
 | 
					- $$A \subset B \equiv$$ every element of A is an element of B $$\equiv \{x \in \mathbb X : x \in A \implies x \in B\}$$
 | 
				
			||||||
- Operations on sets:
 | 
					- Operations on sets:
 | 
				
			||||||
	- Union - $$\cup$$ - $$A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}$$
 | 
						- Union - $$\cup$$ - $$A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}$$
 | 
				
			||||||
	- Intersection - $$\cap$$ - $$A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}$$
 | 
						- Intersection - $$\cap$$ - $$A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}$$
 | 
				
			||||||
	- Complement - $$A'$$ - $$A' = \{ x \in \mathbb X : \neg (x \in A) \}$$
 | 
						- Complement - $$A'$$ - $$A' = \{ x \in \mathbb X : \neg (x \in A) \}$$
 | 
				
			||||||
		- If $$x = \{ 1 \}$$ then $$x' = \emptyset$$
 | 
							- If $$x = \{ 1 \}$$ then $$x' = \emptyset$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Equality of sets: $$A = B$$ iff $$x \in \mathbb X : (x \in A \iff x \in B)$$
 | 
					- Equality of sets: $$A = B$$ iff $$x \in \mathbb X : (x \in A \iff x \in B)$$
 | 
				
			||||||
- Difference of sets:
 | 
					- Difference of sets:
 | 
				
			||||||
	- $$A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'$$
 | 
						- $$A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'$$
 | 
				
			||||||
	- Symmetric difference: $$A \div B = (A \setminus B) \cup (B \setminus A)$$
 | 
						- Symmetric difference: $$A \div B = (A \setminus B) \cup (B \setminus A)$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Laws of set algebra:
 | 
					- Laws of set algebra:
 | 
				
			||||||
	1. $$A \cup B = B \cup A , A \cap B = B \cap A$$
 | 
						- $$A \cup B = B \cup A , A \cap B = B \cap A$$
 | 
				
			||||||
	2. $$(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$$
 | 
						- $$(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$$
 | 
				
			||||||
	3. $$(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ vice versa
 | 
						- $$(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ vice versa
 | 
				
			||||||
	4. $$A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X$$
 | 
						- $$A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X$$
 | 
				
			||||||
	5. $$(A \cup B)' = A' \cap B'$$ vice versa
 | 
						- $$(A \cup B)' = A' \cap B'$$ vice versa
 | 
				
			||||||
	6. $$A \cup A' = \mathbb X, A \cap A' = \emptyset$$
 | 
						- $$A \cup A' = \mathbb X, A \cap A' = \emptyset$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Note: $$\{ \emptyset \} \neq \emptyset$$, one is a set with one element, one is the empty set, no elements ($$\{ \}$$)
 | 
					- Note: $$\{ \emptyset \} \neq \emptyset$$, one is a set with one element, one is the empty set, no elements ($$\{ \}$$)
 | 
				
			||||||
- Quip: $$\{ x \in \mathbb R : x^2 = -1\} = \emptyset$$
 | 
					- Quip: $$\{ x \in \mathbb R : x^2 = -1\} = \emptyset$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -80,22 +88,27 @@ Discrete mathematics
 | 
				
			|||||||
- $$\forall$$ means "for all" and $$\exists$$ means "there exists"
 | 
					- $$\forall$$ means "for all" and $$\exists$$ means "there exists"
 | 
				
			||||||
- $$\forall$$
 | 
					- $$\forall$$
 | 
				
			||||||
	- Shorthand for $$\land$$ e.g. $$(\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0$$
 | 
						- Shorthand for $$\land$$ e.g. $$(\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- $$\exists$$
 | 
					- $$\exists$$
 | 
				
			||||||
	- Shorthand for $$\lor$$ e.g. $$(\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5$$
 | 
						- Shorthand for $$\lor$$ e.g. $$(\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- $$\neg \forall \equiv \exists$$, vice versa
 | 
					- $$\neg \forall \equiv \exists$$, vice versa
 | 
				
			||||||
- With quantifiers we can write logical statements e.g.
 | 
					- With quantifiers we can write logical statements e.g.
 | 
				
			||||||
	- $$(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y$$ is a statement and is false
 | 
						- $$(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y$$ is a statement and is false
 | 
				
			||||||
	- $$(\forall x) (\exists y) x > y$$ is true
 | 
						- $$(\forall x) (\exists y) x > y$$ is true
 | 
				
			||||||
	- shortcut: $$(\exists x, y) \equiv (\exists x) (\exists y)$$
 | 
						- shortcut: $$(\exists x, y) \equiv (\exists x) (\exists y)$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Quantifiers can be expressed in set language, sort of a definition in terms of sets:
 | 
					- Quantifiers can be expressed in set language, sort of a definition in terms of sets:
 | 
				
			||||||
	- $$(\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}$$
 | 
						- $$(\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}$$
 | 
				
			||||||
	- $$(\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset$$
 | 
						- $$(\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset$$
 | 
				
			||||||
	- $$(\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )$$
 | 
						- $$(\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Order of quantifiers matters.
 | 
					- Order of quantifiers matters.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Relations
 | 
					## Relations
 | 
				
			||||||
- Cartesian product:
 | 
					- Cartesian product:
 | 
				
			||||||
	- $$A \times B = \{ (p, q) : p \in A \land q \in B \}$$
 | 
						- $$A \times B = \{ (p, q) : p \in A \land q \in B \}$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Def: A relation $$R$$ on a set $$\mathbb X$$ is a subset of $$\mathbb X \times \mathbb X$$ ($$R \subseteq \mathbb X \times \mathbb X$$)
 | 
					- Def: A relation $$R$$ on a set $$\mathbb X$$ is a subset of $$\mathbb X \times \mathbb X$$ ($$R \subseteq \mathbb X \times \mathbb X$$)
 | 
				
			||||||
- Graph of a function $$f()$$: $$\{ (x, f(x) : x \in Dom(f) \}$$
 | 
					- Graph of a function $$f()$$: $$\{ (x, f(x) : x \in Dom(f) \}$$
 | 
				
			||||||
- Properties of:
 | 
					- Properties of:
 | 
				
			||||||
@@ -103,17 +116,21 @@ Discrete mathematics
 | 
				
			|||||||
	2. Symmetricity: $$[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$$
 | 
						2. Symmetricity: $$[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$$
 | 
				
			||||||
	3. Transitivity: $$(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$$
 | 
						3. Transitivity: $$(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$$
 | 
				
			||||||
	4. Antisymmetricity: $$(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$$
 | 
						4. Antisymmetricity: $$(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Equivalence relations:
 | 
					- Equivalence relations:
 | 
				
			||||||
	- Def: $$R \subseteq \mathbb X \times \mathbb X$$ is said to be an equivalence relation *iff* $$R$$ is reflexive, symmetric and transitive.
 | 
						- Def: $$R \subseteq \mathbb X \times \mathbb X$$ is said to be an equivalence relation *iff* $$R$$ is reflexive, symmetric and transitive.
 | 
				
			||||||
	- Congruence modulo n: $$p R q \equiv n | p - q$$
 | 
						- Congruence modulo n: $$p R q \equiv n | p - q$$
 | 
				
			||||||
	- Def R - and equivalence relation of $$\mathbb X$$: The _equivalence class_ of an element $$x \in \mathbb X$$ is the set $$[x]_R = \{ y \in \mathbb X : x R y \}$$
 | 
						- Def R - and equivalence relation of $$\mathbb X$$: The _equivalence class_ of an element $$x \in \mathbb X$$ is the set $$[x]_R = \{ y \in \mathbb X : x R y \}$$
 | 
				
			||||||
		- Every $$x \in \mathbb X$$ belongs to the equivalence class of some element $$a$$.
 | 
							- Every $$x \in \mathbb X$$ belongs to the equivalence class of some element $$a$$.
 | 
				
			||||||
		- $$(\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])$$
 | 
							- $$(\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- Partitions
 | 
					- Partitions
 | 
				
			||||||
	- A partition is a set containing subsets of some set $$\mathbb X$$ such that their collective symmetric difference equals $$\mathbb X$$. A partition of is a set $$\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}$$ such that:
 | 
						- A partition is a set containing subsets of some set $$\mathbb X$$ such that their collective symmetric difference equals $$\mathbb X$$. A partition of is a set $$\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}$$ such that:
 | 
				
			||||||
		- $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)$$
 | 
							- $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)$$
 | 
				
			||||||
		- $$(\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)$$
 | 
							- $$(\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	- $$\{ A_i \}_{i \in \mathbb I}$$ is a partition *iff* there exists an equivalence relation $$R$$ on $$\mathbb X$$ such that:
 | 
						- $$\{ A_i \}_{i \in \mathbb I}$$ is a partition *iff* there exists an equivalence relation $$R$$ on $$\mathbb X$$ such that:
 | 
				
			||||||
		- $$(\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R$$
 | 
							- $$(\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R$$
 | 
				
			||||||
		- $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$$
 | 
							- $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
	- The quotient set: $$\mathbb X / R = \{ [a] : a \in \mathbb X \}$$
 | 
						- The quotient set: $$\mathbb X / R = \{ [a] : a \in \mathbb X \}$$
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -2,6 +2,8 @@
 | 
				
			|||||||
To add an extended footer section, please create
 | 
					To add an extended footer section, please create
 | 
				
			||||||
`layouts/partials/extended_footer.html` in your Hugo directory.
 | 
					`layouts/partials/extended_footer.html` in your Hugo directory.
 | 
				
			||||||
-->
 | 
					-->
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<!-- KaTeX -->
 | 
				
			||||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css" integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
 | 
					<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css" integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
 | 
				
			||||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js" integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz" crossorigin="anonymous"></script>
 | 
					<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js" integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz" crossorigin="anonymous"></script>
 | 
				
			||||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js" integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
 | 
					<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js" integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										20
									
								
								layouts/partials/footer.html
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										20
									
								
								layouts/partials/footer.html
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,20 @@
 | 
				
			|||||||
 | 
					<footer class="footer">
 | 
				
			||||||
 | 
					  <div class="footer__inner">
 | 
				
			||||||
 | 
					    {{ if $.Site.Copyright }}
 | 
				
			||||||
 | 
					      <div class="copyright copyright--user">
 | 
				
			||||||
 | 
					        <span>{{ $.Site.Copyright | safeHTML }} :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC BY-ND</a></span>
 | 
				
			||||||
 | 
					    {{else}}
 | 
				
			||||||
 | 
					      <div class="copyright">
 | 
				
			||||||
 | 
					        <span>© {{ now.Year }} Powered by <a href="http://gohugo.io">Hugo</a></span>
 | 
				
			||||||
 | 
					    {{end}}
 | 
				
			||||||
 | 
						<span>:: Theme made by <a href="https://twitter.com/panr">panr</a></span>
 | 
				
			||||||
 | 
					      </div>
 | 
				
			||||||
 | 
					  </div>
 | 
				
			||||||
 | 
					</footer>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<script src="{{ "assets/main.js" | absURL }}"></script>
 | 
				
			||||||
 | 
					<script src="{{ "assets/prism.js" | absURL }}"></script>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<!-- Extended footer section-->
 | 
				
			||||||
 | 
					{{ partial "extended_footer.html" . }}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		Reference in New Issue
	
	Block a user