Update eidma.md

Signed-off-by: Abdulkadir Furkan Şanlı <abdulocracy@disroot.org>
This commit is contained in:
Abdulkadir Furkan Şanlı 2019-11-27 15:10:32 +01:00
parent 835828a38e
commit 4250b45759
Signed by: afk
GPG Key ID: C8F00588EE6ED1FE

View File

@ -179,3 +179,22 @@ markup = "pandoc"
- Fact: $f^{-1}$ is a function iff $f$ is a *bijection* (1 to 1 and onto) - Fact: $f^{-1}$ is a function iff $f$ is a *bijection* (1 to 1 and onto)
- For some set $\mathbb A$ the image of $\mathbb A$ by $f$ is $f(\mathbb A) = \{ f(x) : x \in \mathbb A \}$. We can also define the inverse of an image even when the function itself isn't invertible: $f^{-1}(\mathbb A)$ - For some set $\mathbb A$ the image of $\mathbb A$ by $f$ is $f(\mathbb A) = \{ f(x) : x \in \mathbb A \}$. We can also define the inverse of an image even when the function itself isn't invertible: $f^{-1}(\mathbb A)$
## Combinatorics
- $|\mathbb A|$ size (number of elements) of $\mathbb A$
- Rule of addition:
- If $\mathbb A, \mathbb B \subseteq \mathbb X$ and $|\mathbb A|, |\mathbb B| \in \mathbb N$ and $\mathbb A \cap \mathbb B = \emptyset$ then $|\mathbb A \cup \mathbb B| = |\mathbb A| + |\mathbb B|$
- Can be generalized as:
$$
(\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land \\
|\mathbb{A}_1|, |\mathbb{A}_2|, ..., |\mathbb{A}_n| \in \mathbb{N} \implies \\
(\forall i, j \in \{1, 2, ..., n \})(i \neq j \implies \mathbb{A}_i \cap \mathbb{A}_j = \emptyset)
$$
- Rule of multiplication:
- $\mathbb{A}, \mathbb{B} \subseteq \mathbb{X}, |\mathbb{A} \times \mathbb{B}| = |\mathbb{A}| \cdot |\mathbb{B}|$
- Can be generalized as:
$$
(\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land |\mathbb{A}_i| \in \mathbb{N} \implies \\
|\mathbb{A}_1 \times \mathbb{A}_2 \times ... \times \mathbb{A}_n| = |\mathbb{A}_1| \cdot |\mathbb{A}_2| \cdot ... \cdot |\mathbb{A_n}|
$$