Update eidma.md
Signed-off-by: Abdulkadir Furkan Şanlı <abdulocracy@disroot.org>
This commit is contained in:
		@@ -179,3 +179,22 @@ markup = "pandoc"
 | 
				
			|||||||
      - Fact: $f^{-1}$ is a function iff $f$ is a *bijection* (1 to 1 and onto)
 | 
					      - Fact: $f^{-1}$ is a function iff $f$ is a *bijection* (1 to 1 and onto)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
- For some set $\mathbb A$ the image of $\mathbb A$ by $f$ is $f(\mathbb A) = \{ f(x) : x \in \mathbb A \}$. We can also define the inverse of an image even when the function itself isn't invertible: $f^{-1}(\mathbb A)$
 | 
					- For some set $\mathbb A$ the image of $\mathbb A$ by $f$ is $f(\mathbb A) = \{ f(x) : x \in \mathbb A \}$. We can also define the inverse of an image even when the function itself isn't invertible: $f^{-1}(\mathbb A)$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Combinatorics
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- $|\mathbb A|$ size (number of elements) of $\mathbb A$
 | 
				
			||||||
 | 
					- Rule of addition:
 | 
				
			||||||
 | 
					  - If $\mathbb A, \mathbb B \subseteq \mathbb X$ and $|\mathbb A|, |\mathbb B| \in \mathbb N$ and $\mathbb A \cap \mathbb B = \emptyset$ then $|\mathbb A \cup \mathbb B| = |\mathbb A| + |\mathbb B|$
 | 
				
			||||||
 | 
					  - Can be generalized as:
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					(\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land \\
 | 
				
			||||||
 | 
					|\mathbb{A}_1|, |\mathbb{A}_2|, ..., |\mathbb{A}_n| \in \mathbb{N} \implies \\
 | 
				
			||||||
 | 
					(\forall i, j \in \{1, 2, ..., n \})(i \neq j \implies \mathbb{A}_i \cap \mathbb{A}_j = \emptyset)
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					- Rule of multiplication:
 | 
				
			||||||
 | 
					  - $\mathbb{A}, \mathbb{B} \subseteq \mathbb{X}, |\mathbb{A} \times \mathbb{B}| = |\mathbb{A}| \cdot |\mathbb{B}|$
 | 
				
			||||||
 | 
					  - Can be generalized as:
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					(\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land |\mathbb{A}_i| \in \mathbb{N} \implies \\
 | 
				
			||||||
 | 
					|\mathbb{A}_1 \times \mathbb{A}_2 \times ... \times \mathbb{A}_n| = |\mathbb{A}_1| \cdot |\mathbb{A}_2| \cdot ... \cdot |\mathbb{A_n}|
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user