Do stuff
Signed-off-by: Abdulkadir Furkan Şanlı <me@abdulocra.cy>
This commit is contained in:
parent
a2238e26f1
commit
441057ecee
27
config.toml
27
config.toml
@ -1,36 +1,31 @@
|
||||
baseURL = "https://abdulocra.cy/"
|
||||
languageCode = "en-us"
|
||||
title = "abdulocracy"
|
||||
baseurl = "/"
|
||||
theme = "terminal"
|
||||
paginate = 5
|
||||
|
||||
[params]
|
||||
# dir name of your blog content (default is `content/posts`)
|
||||
contentTypeName = "posts"
|
||||
# ["orange", "blue", "red", "green", "pink"]
|
||||
themeColor = "pink"
|
||||
# if you set this to 0, only submenu trigger will be visible
|
||||
contentTypeName = "blog"
|
||||
themeColor = "green"
|
||||
showMenuItems = 0
|
||||
# show selector to switch language
|
||||
showLanguageSelector = false
|
||||
# set theme to full screen width
|
||||
fullWidthTheme = false
|
||||
# center theme with default width
|
||||
centerTheme = true
|
||||
# set a custom favicon (default is a `themeColor` square)
|
||||
favicon = "img/favicon/favicon.png"
|
||||
favicon = "favicon.png"
|
||||
enableGitInfo = true
|
||||
showLastUpdated = true
|
||||
updatedDatePrefix = "updated"
|
||||
|
||||
[languages]
|
||||
[languages.en]
|
||||
languageName = "English"
|
||||
title = "abdulocracy's personal site"
|
||||
owner = "Abdulkadir Furkan Şanlı"
|
||||
subtitle = ""
|
||||
keywords = ""
|
||||
copyright = "© Abdulkadir Furkan Şanlı 2019"
|
||||
copyright = ""
|
||||
menuMore = "menu"
|
||||
readMore = "read more"
|
||||
readOtherPosts = "read other posts"
|
||||
readMore = "more"
|
||||
readOtherPosts = "other posts"
|
||||
|
||||
[languages.en.params.logo]
|
||||
logoText = "abdulocracy"
|
||||
@ -44,7 +39,7 @@ paginate = 5
|
||||
[[languages.en.menu.main]]
|
||||
identifier = "uni-notes"
|
||||
name = "university notes"
|
||||
url = "/tags/university-notes"
|
||||
url = "/university-notes"
|
||||
[[languages.en.menu.main]]
|
||||
identifier = "music"
|
||||
name = "music"
|
||||
|
@ -1,6 +1,6 @@
|
||||
---
|
||||
title: "about"
|
||||
date: 2020-06-10
|
||||
date: 2019-11-04
|
||||
---
|
||||
|
||||
<image src="face.jpg" width="173" height="150" />
|
||||
|
10
content/blog/0.md
Normal file
10
content/blog/0.md
Normal file
@ -0,0 +1,10 @@
|
||||
---
|
||||
title: 0
|
||||
date: "2020-12-25"
|
||||
---
|
||||
|
||||
You found my site. Congratulations.
|
||||
|
||||
If there's content on here, how wonderful. If not, then I haven't yet realized my vague plans for a blog.
|
||||
|
||||
Fare thee well.
|
Before Width: | Height: | Size: 138 KiB After Width: | Height: | Size: 138 KiB |
@ -1,9 +1,8 @@
|
||||
+++
|
||||
title = "Introduction to Discrete Mathematics"
|
||||
date = "2019-11-20"
|
||||
tags = ["university-notes"]
|
||||
markup = "pandoc"
|
||||
+++
|
||||
---
|
||||
title: Introduction to Discrete Mathematics
|
||||
date: "2019-11-20"
|
||||
markup: pandoc
|
||||
---
|
||||
|
||||
- Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.
|
||||
|
@ -1,8 +1,3 @@
|
||||
<!--
|
||||
To add an extended footer section, please create
|
||||
`layouts/partials/extended_footer.html` in your Hugo directory.
|
||||
-->
|
||||
|
||||
<!-- KaTeX -->
|
||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css"
|
||||
integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
|
||||
@ -12,16 +7,3 @@ To add an extended footer section, please create
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js"
|
||||
integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
|
||||
onload="renderMathInElement(document.body);"></script>
|
||||
|
||||
<!-- MathJax
|
||||
<script>
|
||||
MathJax = {
|
||||
tex: {
|
||||
inlineMath: [['$', '$'], ['\\(', '\\)']],
|
||||
displayMath: [['$$', '$$'], ['\[', '\]']]
|
||||
}
|
||||
};
|
||||
</script>
|
||||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js">
|
||||
</script>
|
||||
-->
|
||||
|
@ -1,20 +1,17 @@
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
{{ if $.Site.Copyright }}
|
||||
<div class="copyright copyright--user">
|
||||
<span>{{ $.Site.Copyright | safeHTML }} :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a></span>
|
||||
{{else}}
|
||||
<div class="copyright">
|
||||
<span>© {{ now.Year }} Powered by <a href="http://gohugo.io">Hugo</a></span>
|
||||
{{end}}
|
||||
<span>:: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
<span>© Abdulkadir Furkan Şanlı {{ now.Year }} :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="{{ " assets/main.js" | absURL }}"></script>
|
||||
<script src="{{ " assets/prism.js" | absURL }}"></script>
|
||||
|
||||
{{ if $.Site.Params.showLanguageSelector }}
|
||||
<script src="{{ " assets/languageSelector.js" | absURL }}"></script>
|
||||
{{ end }}
|
||||
|
||||
<!-- Extended footer section-->
|
||||
{{ partial "extended_footer.html" . }}
|
||||
|
176
public/404.html
Normal file
176
public/404.html
Normal file
@ -0,0 +1,176 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
|
||||
<title>404 Page not found :: abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content="" />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/404.html" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="website" />
|
||||
<meta property="og:title" content="404 Page not found :: abdulocracy's personal site">
|
||||
<meta property="og:description" content="" />
|
||||
<meta property="og:url" content="https://abdulocra.cy/404.html" />
|
||||
<meta property="og:site_name" content="404 Page not found" />
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</head>
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
<div class="header__logo">
|
||||
<a href="/">
|
||||
<div class="logo">
|
||||
abdulocracy
|
||||
</div>
|
||||
</a>
|
||||
|
||||
</div>
|
||||
<div class="menu-trigger">menu</div>
|
||||
</div>
|
||||
|
||||
<nav class="menu">
|
||||
<ul class="menu__inner menu__inner--desktop">
|
||||
|
||||
|
||||
|
||||
<ul class="menu__sub-inner">
|
||||
<li class="menu__sub-inner-more-trigger">menu ▾</li>
|
||||
|
||||
<ul class="menu__sub-inner-more hidden">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
|
||||
<ul class="menu__inner menu__inner--mobile">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
</nav>
|
||||
|
||||
|
||||
</header>
|
||||
|
||||
|
||||
<div class="content">
|
||||
|
||||
<div class="post">
|
||||
<h1 class="post-title">404 — Page not found...</h1>
|
||||
|
||||
<div class="post-content">
|
||||
<a href="https://abdulocra.cy/">Back to home page →</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css"
|
||||
integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js"
|
||||
integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz"
|
||||
crossorigin="anonymous"></script>
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js"
|
||||
integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
|
||||
onload="renderMathInElement(document.body);"></script>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
</html>
|
@ -5,16 +5,18 @@
|
||||
<title>about :: abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content=" name: Abdulkadir Furkan Şanlı handle: abdulocracy contact: email: me at abdulocra dot cy gpg: 0xEE6ED1FE irc (freenode): abdulocracy " />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/about/" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/pink.css">
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
@ -23,29 +25,31 @@
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/img/favicon/favicon.png">
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
<meta name="twitter:title" content="about :: abdulocracy's personal site — " />
|
||||
<meta name="twitter:description" content=" name: Abdulkadir Furkan Şanlı handle: abdulocracy contact: email: me at abdulocra dot cy gpg: 0xEE6ED1FE irc (freenode): abdulocracy " />
|
||||
<meta name="twitter:site" content="https://abdulocra.cy/" />
|
||||
<meta name="twitter:creator" content="" />
|
||||
<meta name="twitter:image" content="">
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="article" />
|
||||
<meta property="og:title" content="about :: abdulocracy's personal site — ">
|
||||
<meta property="og:title" content="about :: abdulocracy's personal site">
|
||||
<meta property="og:description" content=" name: Abdulkadir Furkan Şanlı handle: abdulocracy contact: email: me at abdulocra dot cy gpg: 0xEE6ED1FE irc (freenode): abdulocracy " />
|
||||
<meta property="og:url" content="https://abdulocra.cy/about/" />
|
||||
<meta property="og:site_name" content="about" />
|
||||
<meta property="og:image" content="">
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
<meta property="article:published_time" content="2020-06-10 00:00:00 +0000 UTC" />
|
||||
|
||||
<meta property="article:published_time" content="2019-11-04 00:00:00 +0000 UTC" />
|
||||
|
||||
|
||||
|
||||
|
||||
@ -58,10 +62,10 @@
|
||||
|
||||
|
||||
</head>
|
||||
<body class="">
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center">
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
@ -95,7 +99,7 @@
|
||||
|
||||
|
||||
|
||||
<li><a href="/tags/university-notes">university notes</a></li>
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
@ -117,7 +121,7 @@
|
||||
|
||||
|
||||
|
||||
<li><a href="/tags/university-notes">university notes</a></li>
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
@ -136,7 +140,7 @@
|
||||
<div class="post-meta">
|
||||
|
||||
<span class="post-date">
|
||||
2020-06-10
|
||||
2019-11-04 [updated: 2019-11-04]
|
||||
</span>
|
||||
|
||||
|
||||
@ -146,7 +150,9 @@
|
||||
|
||||
|
||||
|
||||
<div class="post-content">
|
||||
|
||||
|
||||
<div class="post-content"><div>
|
||||
<p><image src="face.jpg" width="173" height="150" /></p>
|
||||
<ul>
|
||||
<li>name: Abdulkadir Furkan Şanlı</li>
|
||||
@ -160,7 +166,8 @@
|
||||
</li>
|
||||
</ul>
|
||||
|
||||
</div>
|
||||
</div></div>
|
||||
|
||||
|
||||
|
||||
|
||||
@ -172,18 +179,14 @@
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2019 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a></span>
|
||||
|
||||
<span>:: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/assets/prism.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
@ -200,8 +203,6 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
|
BIN
public/assets/0fe15bb5eea5828156c892b0708bea40.woff
Normal file
BIN
public/assets/0fe15bb5eea5828156c892b0708bea40.woff
Normal file
Binary file not shown.
BIN
public/assets/910c4f69908ca1b54b0fed395a9ad573.woff
Normal file
BIN
public/assets/910c4f69908ca1b54b0fed395a9ad573.woff
Normal file
Binary file not shown.
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1,133 +1 @@
|
||||
/******/ (function(modules) { // webpackBootstrap
|
||||
/******/ // The module cache
|
||||
/******/ var installedModules = {};
|
||||
/******/
|
||||
/******/ // The require function
|
||||
/******/ function __webpack_require__(moduleId) {
|
||||
/******/
|
||||
/******/ // Check if module is in cache
|
||||
/******/ if(installedModules[moduleId]) {
|
||||
/******/ return installedModules[moduleId].exports;
|
||||
/******/ }
|
||||
/******/ // Create a new module (and put it into the cache)
|
||||
/******/ var module = installedModules[moduleId] = {
|
||||
/******/ i: moduleId,
|
||||
/******/ l: false,
|
||||
/******/ exports: {}
|
||||
/******/ };
|
||||
/******/
|
||||
/******/ // Execute the module function
|
||||
/******/ modules[moduleId].call(module.exports, module, module.exports, __webpack_require__);
|
||||
/******/
|
||||
/******/ // Flag the module as loaded
|
||||
/******/ module.l = true;
|
||||
/******/
|
||||
/******/ // Return the exports of the module
|
||||
/******/ return module.exports;
|
||||
/******/ }
|
||||
/******/
|
||||
/******/
|
||||
/******/ // expose the modules object (__webpack_modules__)
|
||||
/******/ __webpack_require__.m = modules;
|
||||
/******/
|
||||
/******/ // expose the module cache
|
||||
/******/ __webpack_require__.c = installedModules;
|
||||
/******/
|
||||
/******/ // define getter function for harmony exports
|
||||
/******/ __webpack_require__.d = function(exports, name, getter) {
|
||||
/******/ if(!__webpack_require__.o(exports, name)) {
|
||||
/******/ Object.defineProperty(exports, name, { enumerable: true, get: getter });
|
||||
/******/ }
|
||||
/******/ };
|
||||
/******/
|
||||
/******/ // define __esModule on exports
|
||||
/******/ __webpack_require__.r = function(exports) {
|
||||
/******/ if(typeof Symbol !== 'undefined' && Symbol.toStringTag) {
|
||||
/******/ Object.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });
|
||||
/******/ }
|
||||
/******/ Object.defineProperty(exports, '__esModule', { value: true });
|
||||
/******/ };
|
||||
/******/
|
||||
/******/ // create a fake namespace object
|
||||
/******/ // mode & 1: value is a module id, require it
|
||||
/******/ // mode & 2: merge all properties of value into the ns
|
||||
/******/ // mode & 4: return value when already ns object
|
||||
/******/ // mode & 8|1: behave like require
|
||||
/******/ __webpack_require__.t = function(value, mode) {
|
||||
/******/ if(mode & 1) value = __webpack_require__(value);
|
||||
/******/ if(mode & 8) return value;
|
||||
/******/ if((mode & 4) && typeof value === 'object' && value && value.__esModule) return value;
|
||||
/******/ var ns = Object.create(null);
|
||||
/******/ __webpack_require__.r(ns);
|
||||
/******/ Object.defineProperty(ns, 'default', { enumerable: true, value: value });
|
||||
/******/ if(mode & 2 && typeof value != 'string') for(var key in value) __webpack_require__.d(ns, key, function(key) { return value[key]; }.bind(null, key));
|
||||
/******/ return ns;
|
||||
/******/ };
|
||||
/******/
|
||||
/******/ // getDefaultExport function for compatibility with non-harmony modules
|
||||
/******/ __webpack_require__.n = function(module) {
|
||||
/******/ var getter = module && module.__esModule ?
|
||||
/******/ function getDefault() { return module['default']; } :
|
||||
/******/ function getModuleExports() { return module; };
|
||||
/******/ __webpack_require__.d(getter, 'a', getter);
|
||||
/******/ return getter;
|
||||
/******/ };
|
||||
/******/
|
||||
/******/ // Object.prototype.hasOwnProperty.call
|
||||
/******/ __webpack_require__.o = function(object, property) { return Object.prototype.hasOwnProperty.call(object, property); };
|
||||
/******/
|
||||
/******/ // __webpack_public_path__
|
||||
/******/ __webpack_require__.p = "";
|
||||
/******/
|
||||
/******/
|
||||
/******/ // Load entry module and return exports
|
||||
/******/ return __webpack_require__(__webpack_require__.s = 0);
|
||||
/******/ })
|
||||
/************************************************************************/
|
||||
/******/ ({
|
||||
|
||||
/***/ "./source/js/languageSelector.js":
|
||||
/*!***************************************!*\
|
||||
!*** ./source/js/languageSelector.js ***!
|
||||
\***************************************/
|
||||
/*! no static exports found */
|
||||
/***/ (function(module, exports) {
|
||||
|
||||
eval("var mobileQuery = getComputedStyle(document.body).getPropertyValue(\"--phoneWidth\");\n\nvar isMobile = function isMobile() {\n return window.matchMedia(mobileQuery).matches;\n};\n\nif (!isMobile()) {\n languageSelector = document.querySelector(\".language-selector-current\");\n moreLanguagesContainer = document.querySelector(\".language-selector__more\");\n document.body.addEventListener(\"click\", function () {\n if (moreLanguagesContainer && !moreLanguagesContainer.classList.contains(\"hidden\")) {\n moreLanguagesContainer.classList.add(\"hidden\");\n }\n });\n languageSelector && languageSelector.addEventListener(\"click\", function (e) {\n e.stopPropagation();\n moreLanguagesContainer.classList.toggle(\"hidden\");\n });\n}\n\n//# sourceURL=webpack:///./source/js/languageSelector.js?");
|
||||
|
||||
/***/ }),
|
||||
|
||||
/***/ "./source/js/main.js":
|
||||
/*!***************************!*\
|
||||
!*** ./source/js/main.js ***!
|
||||
\***************************/
|
||||
/*! no static exports found */
|
||||
/***/ (function(module, exports) {
|
||||
|
||||
eval("// Add your script here\n\n//# sourceURL=webpack:///./source/js/main.js?");
|
||||
|
||||
/***/ }),
|
||||
|
||||
/***/ "./source/js/menu.js":
|
||||
/*!***************************!*\
|
||||
!*** ./source/js/menu.js ***!
|
||||
\***************************/
|
||||
/*! no static exports found */
|
||||
/***/ (function(module, exports) {
|
||||
|
||||
eval("var container = document.querySelector(\".container\");\nvar menu = document.querySelector(\".menu\");\nvar mobileMenuTrigger = document.querySelector(\".menu-trigger\");\nvar desktopMenu = document.querySelector(\".menu__inner--desktop\");\nvar desktopMenuTrigger = document.querySelector(\".menu__sub-inner-more-trigger\");\nvar menuMore = document.querySelector(\".menu__sub-inner-more\");\nvar mobileQuery = getComputedStyle(document.body).getPropertyValue(\"--phoneWidth\");\n\nvar isMobile = function isMobile() {\n return window.matchMedia(mobileQuery).matches;\n};\n\nvar handleMenuClasses = function handleMenuClasses() {\n mobileMenuTrigger && mobileMenuTrigger.classList.toggle(\"hidden\", !isMobile());\n menu && menu.classList.toggle(\"hidden\", isMobile());\n menuMore && menuMore.classList.toggle(\"hidden\", !isMobile());\n}; // Common\n\n\nmenu && menu.addEventListener(\"click\", function (e) {\n return e.stopPropagation();\n});\nmenuMore && menuMore.addEventListener(\"click\", function (e) {\n return e.stopPropagation();\n});\nhandleMenuClasses();\ndocument.body.addEventListener(\"click\", function () {\n if (!isMobile() && menuMore && !menuMore.classList.contains(\"hidden\")) {\n menuMore.classList.add(\"hidden\");\n } else if (isMobile() && !menu.classList.contains(\"hidden\")) {\n menu.classList.add(\"hidden\");\n }\n});\nwindow.addEventListener(\"resize\", handleMenuClasses); // Mobile menu\n\nmobileMenuTrigger && mobileMenuTrigger.addEventListener(\"click\", function (e) {\n e.stopPropagation();\n menu && menu.classList.toggle(\"hidden\");\n}); // Desktop menu\n\ndesktopMenuTrigger && desktopMenuTrigger.addEventListener(\"click\", function (e) {\n e.stopPropagation();\n menuMore && menuMore.classList.toggle(\"hidden\");\n\n if (menuMore.getBoundingClientRect().right > container.getBoundingClientRect().right) {\n menuMore.style.left = \"auto\";\n menuMore.style.right = 0;\n }\n});\n\n//# sourceURL=webpack:///./source/js/menu.js?");
|
||||
|
||||
/***/ }),
|
||||
|
||||
/***/ 0:
|
||||
/*!*************************************************************************************!*\
|
||||
!*** multi ./source/js/main.js ./source/js/menu.js ./source/js/languageSelector.js ***!
|
||||
\*************************************************************************************/
|
||||
/*! no static exports found */
|
||||
/***/ (function(module, exports, __webpack_require__) {
|
||||
|
||||
eval("__webpack_require__(/*! /Users/radek/Documents/Git/Moje/hugoBasicExample/themes/terminal/source/js/main.js */\"./source/js/main.js\");\n__webpack_require__(/*! /Users/radek/Documents/Git/Moje/hugoBasicExample/themes/terminal/source/js/menu.js */\"./source/js/menu.js\");\nmodule.exports = __webpack_require__(/*! /Users/radek/Documents/Git/Moje/hugoBasicExample/themes/terminal/source/js/languageSelector.js */\"./source/js/languageSelector.js\");\n\n\n//# sourceURL=webpack:///multi_./source/js/main.js_./source/js/menu.js_./source/js/languageSelector.js?");
|
||||
|
||||
/***/ })
|
||||
|
||||
/******/ });
|
||||
!function(n){var o={};function r(e){if(o[e])return o[e].exports;var t=o[e]={i:e,l:!1,exports:{}};return n[e].call(t.exports,t,t.exports,r),t.l=!0,t.exports}r.m=n,r.c=o,r.d=function(e,t,n){r.o(e,t)||Object.defineProperty(e,t,{enumerable:!0,get:n})},r.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},r.t=function(t,e){if(1&e&&(t=r(t)),8&e)return t;if(4&e&&"object"==typeof t&&t&&t.__esModule)return t;var n=Object.create(null);if(r.r(n),Object.defineProperty(n,"default",{enumerable:!0,value:t}),2&e&&"string"!=typeof t)for(var o in t)r.d(n,o,function(e){return t[e]}.bind(null,o));return n},r.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return r.d(t,"a",t),t},r.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},r.p="",r(r.s=0)}([function(e,t,n){n(1),e.exports=n(2)},function(e,t){function n(){return window.matchMedia(d).matches}function o(){c&&c.classList.toggle("hidden",!n()),i&&i.classList.toggle("hidden",n()),a&&a.classList.toggle("hidden",!n())}var r=document.querySelector(".container"),i=document.querySelector(".menu"),c=document.querySelector(".menu-trigger"),u=(document.querySelector(".menu__inner--desktop"),document.querySelector(".menu__sub-inner-more-trigger")),a=document.querySelector(".menu__sub-inner-more"),d=getComputedStyle(document.body).getPropertyValue("--phoneWidth");i&&i.addEventListener("click",function(e){return e.stopPropagation()}),a&&a.addEventListener("click",function(e){return e.stopPropagation()}),o(),document.body.addEventListener("click",function(){n()||!a||a.classList.contains("hidden")?n()&&!i.classList.contains("hidden")&&i.classList.add("hidden"):a.classList.add("hidden")}),window.addEventListener("resize",o),c&&c.addEventListener("click",function(e){e.stopPropagation(),i&&i.classList.toggle("hidden")}),u&&u.addEventListener("click",function(e){e.stopPropagation(),a&&a.classList.toggle("hidden"),a.getBoundingClientRect().right>r.getBoundingClientRect().right&&(a.style.left="auto",a.style.right=0)})},function(e,t){var n=getComputedStyle(document.body).getPropertyValue("--phoneWidth");window.matchMedia(n).matches||(languageSelector=document.querySelector(".language-selector-current"),moreLanguagesContainer=document.querySelector(".language-selector__more"),document.body.addEventListener("click",function(){moreLanguagesContainer&&!moreLanguagesContainer.classList.contains("hidden")&&moreLanguagesContainer.classList.add("hidden")}),languageSelector&&languageSelector.addEventListener("click",function(e){e.stopPropagation(),moreLanguagesContainer.classList.toggle("hidden")}))}]);
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
206
public/blog/0/index.html
Normal file
206
public/blog/0/index.html
Normal file
@ -0,0 +1,206 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
|
||||
<title>0 :: abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content="You found my site. Congratulations.
|
||||
If there&rsquo;s content on here, how wonderful. If not, then I haven&rsquo;t yet realized my vague plans for a blog.
|
||||
Fare thee well." />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/blog/0/" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="article" />
|
||||
<meta property="og:title" content="0 :: abdulocracy's personal site">
|
||||
<meta property="og:description" content="You found my site. Congratulations.
|
||||
If there&rsquo;s content on here, how wonderful. If not, then I haven&rsquo;t yet realized my vague plans for a blog.
|
||||
Fare thee well." />
|
||||
<meta property="og:url" content="https://abdulocra.cy/blog/0/" />
|
||||
<meta property="og:site_name" content="0" />
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
|
||||
<meta property="article:published_time" content="2020-12-25 00:00:00 +0000 UTC" />
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</head>
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
<div class="header__logo">
|
||||
<a href="/">
|
||||
<div class="logo">
|
||||
abdulocracy
|
||||
</div>
|
||||
</a>
|
||||
|
||||
</div>
|
||||
<div class="menu-trigger">menu</div>
|
||||
</div>
|
||||
|
||||
<nav class="menu">
|
||||
<ul class="menu__inner menu__inner--desktop">
|
||||
|
||||
|
||||
|
||||
<ul class="menu__sub-inner">
|
||||
<li class="menu__sub-inner-more-trigger">menu ▾</li>
|
||||
|
||||
<ul class="menu__sub-inner-more hidden">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
|
||||
<ul class="menu__inner menu__inner--mobile">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
</nav>
|
||||
|
||||
|
||||
</header>
|
||||
|
||||
|
||||
<div class="content">
|
||||
|
||||
<div class="post">
|
||||
<h1 class="post-title">
|
||||
<a href="https://abdulocra.cy/blog/0/">0</a></h1>
|
||||
<div class="post-meta">
|
||||
|
||||
<span class="post-date">
|
||||
2020-12-25 [updated: 2020-12-25]
|
||||
</span>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="post-content"><div>
|
||||
<p>You found my site. Congratulations.</p>
|
||||
<p>If there’s content on here, how wonderful. If not, then I haven’t yet realized my vague plans for a blog.</p>
|
||||
<p>Fare thee well.</p>
|
||||
|
||||
</div></div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css"
|
||||
integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js"
|
||||
integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz"
|
||||
crossorigin="anonymous"></script>
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js"
|
||||
integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
|
||||
onload="renderMathInElement(document.body);"></script>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
</html>
|
210
public/blog/index.html
Normal file
210
public/blog/index.html
Normal file
@ -0,0 +1,210 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
|
||||
<title>Blogs :: abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content="" />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/blog/" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="website" />
|
||||
<meta property="og:title" content="Blogs :: abdulocracy's personal site">
|
||||
<meta property="og:description" content="" />
|
||||
<meta property="og:url" content="https://abdulocra.cy/blog/" />
|
||||
<meta property="og:site_name" content="Blogs" />
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link href="/blog/index.xml" rel="alternate" type="application/rss+xml" title="abdulocracy's personal site" />
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</head>
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
<div class="header__logo">
|
||||
<a href="/">
|
||||
<div class="logo">
|
||||
abdulocracy
|
||||
</div>
|
||||
</a>
|
||||
|
||||
</div>
|
||||
<div class="menu-trigger">menu</div>
|
||||
</div>
|
||||
|
||||
<nav class="menu">
|
||||
<ul class="menu__inner menu__inner--desktop">
|
||||
|
||||
|
||||
|
||||
<ul class="menu__sub-inner">
|
||||
<li class="menu__sub-inner-more-trigger">menu ▾</li>
|
||||
|
||||
<ul class="menu__sub-inner-more hidden">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
|
||||
<ul class="menu__inner menu__inner--mobile">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
</nav>
|
||||
|
||||
|
||||
</header>
|
||||
|
||||
|
||||
<div class="content">
|
||||
|
||||
|
||||
<div class="posts">
|
||||
|
||||
<div class="post on-list">
|
||||
<h1 class="post-title">
|
||||
<a href="https://abdulocra.cy/blog/0/">0</a>
|
||||
</h1>
|
||||
<div class="post-meta">
|
||||
<span class="post-date">
|
||||
2020-12-25
|
||||
</span>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="post-content">
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<div>
|
||||
<a class="read-more button"
|
||||
href="/blog/0/">more →</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<div class="pagination">
|
||||
<div class="pagination__buttons">
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css"
|
||||
integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js"
|
||||
integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz"
|
||||
crossorigin="anonymous"></script>
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js"
|
||||
integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
|
||||
onload="renderMathInElement(document.body);"></script>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
</html>
|
22
public/blog/index.xml
Normal file
22
public/blog/index.xml
Normal file
@ -0,0 +1,22 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
|
||||
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
|
||||
<channel>
|
||||
<title>Blogs on abdulocracy's personal site</title>
|
||||
<link>https://abdulocra.cy/blog/</link>
|
||||
<description>Recent content in Blogs on abdulocracy's personal site</description>
|
||||
<generator>Hugo -- gohugo.io</generator>
|
||||
<language>en-us</language>
|
||||
<lastBuildDate>Fri, 25 Dec 2020 00:00:00 +0000</lastBuildDate><atom:link href="https://abdulocra.cy/blog/index.xml" rel="self" type="application/rss+xml" />
|
||||
<item>
|
||||
<title>0</title>
|
||||
<link>https://abdulocra.cy/blog/0/</link>
|
||||
<pubDate>Fri, 25 Dec 2020 00:00:00 +0000</pubDate>
|
||||
|
||||
<guid>https://abdulocra.cy/blog/0/</guid>
|
||||
<description>You found my site. Congratulations.
|
||||
If there&rsquo;s content on here, how wonderful. If not, then I haven&rsquo;t yet realized my vague plans for a blog.
|
||||
Fare thee well.</description>
|
||||
</item>
|
||||
|
||||
</channel>
|
||||
</rss>
|
1
public/blog/page/1/index.html
Normal file
1
public/blog/page/1/index.html
Normal file
@ -0,0 +1 @@
|
||||
<!DOCTYPE html><html><head><title>https://abdulocra.cy/blog/</title><link rel="canonical" href="https://abdulocra.cy/blog/"/><meta name="robots" content="noindex"><meta charset="utf-8" /><meta http-equiv="refresh" content="0; url=https://abdulocra.cy/blog/" /></head></html>
|
@ -5,16 +5,18 @@
|
||||
<title>Categories :: abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content="" />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/categories/" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/pink.css">
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
@ -23,25 +25,25 @@
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/img/favicon/favicon.png">
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
<meta name="twitter:title" content="Categories :: abdulocracy's personal site — " />
|
||||
<meta name="twitter:description" content="" />
|
||||
<meta name="twitter:site" content="https://abdulocra.cy/" />
|
||||
<meta name="twitter:creator" content="" />
|
||||
<meta name="twitter:image" content="">
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="website" />
|
||||
<meta property="og:title" content="Categories :: abdulocracy's personal site — ">
|
||||
<meta property="og:title" content="Categories :: abdulocracy's personal site">
|
||||
<meta property="og:description" content="" />
|
||||
<meta property="og:url" content="https://abdulocra.cy/categories/" />
|
||||
<meta property="og:site_name" content="Categories" />
|
||||
<meta property="og:image" content="">
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
@ -60,10 +62,10 @@
|
||||
|
||||
|
||||
</head>
|
||||
<body class="">
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center">
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
@ -97,7 +99,7 @@
|
||||
|
||||
|
||||
|
||||
<li><a href="/tags/university-notes">university notes</a></li>
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
@ -119,7 +121,7 @@
|
||||
|
||||
|
||||
|
||||
<li><a href="/tags/university-notes">university notes</a></li>
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
@ -132,22 +134,12 @@
|
||||
|
||||
<div class="content">
|
||||
|
||||
<div class="posts">
|
||||
<div class="terms">
|
||||
<h1>Categories</h1>
|
||||
<ul>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="pagination">
|
||||
<div class="pagination__buttons">
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
@ -155,18 +147,14 @@
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2019 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a></span>
|
||||
|
||||
<span>:: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/assets/prism.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
@ -183,8 +171,6 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
|
@ -5,11 +5,6 @@
|
||||
<link>https://abdulocra.cy/categories/</link>
|
||||
<description>Recent content in Categories on abdulocracy's personal site</description>
|
||||
<generator>Hugo -- gohugo.io</generator>
|
||||
<language>en-us</language>
|
||||
<copyright>© Abdulkadir Furkan Şanlı 2019</copyright>
|
||||
|
||||
<atom:link href="https://abdulocra.cy/categories/index.xml" rel="self" type="application/rss+xml" />
|
||||
|
||||
|
||||
<language>en-us</language><atom:link href="https://abdulocra.cy/categories/index.xml" rel="self" type="application/rss+xml" />
|
||||
</channel>
|
||||
</rss>
|
BIN
public/favicon.png
Normal file
BIN
public/favicon.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 138 KiB |
@ -1,21 +1,23 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta name="generator" content="Hugo 0.72.0" />
|
||||
<meta name="generator" content="Hugo 0.79.1" />
|
||||
|
||||
<title>abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content="" />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/pink.css">
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
@ -24,25 +26,25 @@
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/img/favicon/favicon.png">
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
<meta name="twitter:title" content="abdulocracy's personal site — " />
|
||||
<meta name="twitter:description" content="" />
|
||||
<meta name="twitter:site" content="https://abdulocra.cy/" />
|
||||
<meta name="twitter:creator" content="" />
|
||||
<meta name="twitter:image" content="">
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="website" />
|
||||
<meta property="og:title" content="abdulocracy's personal site — ">
|
||||
<meta property="og:title" content="abdulocracy's personal site">
|
||||
<meta property="og:description" content="" />
|
||||
<meta property="og:url" content="https://abdulocra.cy/" />
|
||||
<meta property="og:site_name" content="abdulocracy's personal site" />
|
||||
<meta property="og:image" content="">
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
@ -61,10 +63,10 @@
|
||||
|
||||
|
||||
</head>
|
||||
<body class="">
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center">
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
@ -98,7 +100,7 @@
|
||||
|
||||
|
||||
|
||||
<li><a href="/tags/university-notes">university notes</a></li>
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
@ -120,7 +122,7 @@
|
||||
|
||||
|
||||
|
||||
<li><a href="/tags/university-notes">university notes</a></li>
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
@ -133,6 +135,7 @@
|
||||
|
||||
<div class="content">
|
||||
|
||||
|
||||
<div class="posts">
|
||||
|
||||
|
||||
@ -146,39 +149,29 @@
|
||||
|
||||
<div class="post on-list">
|
||||
<h1 class="post-title">
|
||||
<a href="https://abdulocra.cy/posts/eidma/">Introduction to Discrete Mathematics</a></h1>
|
||||
<a href="https://abdulocra.cy/blog/0/">0</a>
|
||||
</h1>
|
||||
<div class="post-meta">
|
||||
<span class="post-date">
|
||||
2019-11-20
|
||||
2020-12-25
|
||||
</span>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<span class="post-tags">
|
||||
|
||||
#<a href="https://abdulocra.cy/tags/university-notes/">university-notes</a>
|
||||
|
||||
</span>
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="post-content">
|
||||
|
||||
|
||||
Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false.
|
||||
We should avoid variables when forming statements, as they may change the logical value.
|
||||
(2=7) statement (x=5) not a statement In logic we do not use the equals sign, we use the equivalence sign (\equiv).
|
||||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<div>
|
||||
<a class="read-more button"
|
||||
href="/posts/eidma/">read more →</a>
|
||||
href="/blog/0/">more →</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
@ -197,18 +190,14 @@ Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2019 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a></span>
|
||||
|
||||
<span>:: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/assets/prism.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
@ -225,8 +214,6 @@ Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
|
@ -6,32 +6,38 @@
|
||||
<description>Recent content on abdulocracy's personal site</description>
|
||||
<generator>Hugo -- gohugo.io</generator>
|
||||
<language>en-us</language>
|
||||
<copyright>© Abdulkadir Furkan Şanlı 2019</copyright>
|
||||
<lastBuildDate>Wed, 20 Nov 2019 00:00:00 +0000</lastBuildDate>
|
||||
|
||||
<atom:link href="https://abdulocra.cy/index.xml" rel="self" type="application/rss+xml" />
|
||||
|
||||
|
||||
<lastBuildDate>Fri, 25 Dec 2020 00:00:00 +0000</lastBuildDate><atom:link href="https://abdulocra.cy/index.xml" rel="self" type="application/rss+xml" />
|
||||
<item>
|
||||
<title>about</title>
|
||||
<link>https://abdulocra.cy/about/</link>
|
||||
<pubDate>Wed, 10 Jun 2020 00:00:00 +0000</pubDate>
|
||||
<title>0</title>
|
||||
<link>https://abdulocra.cy/blog/0/</link>
|
||||
<pubDate>Fri, 25 Dec 2020 00:00:00 +0000</pubDate>
|
||||
|
||||
<guid>https://abdulocra.cy/about/</guid>
|
||||
<description> name: Abdulkadir Furkan Şanlı handle: abdulocracy contact: email: me at abdulocra dot cy gpg: 0xEE6ED1FE irc (freenode): abdulocracy </description>
|
||||
<guid>https://abdulocra.cy/blog/0/</guid>
|
||||
<description>You found my site. Congratulations.
|
||||
If there&rsquo;s content on here, how wonderful. If not, then I haven&rsquo;t yet realized my vague plans for a blog.
|
||||
Fare thee well.</description>
|
||||
</item>
|
||||
|
||||
<item>
|
||||
<title>Introduction to Discrete Mathematics</title>
|
||||
<link>https://abdulocra.cy/posts/eidma/</link>
|
||||
<link>https://abdulocra.cy/university-notes/eidma/</link>
|
||||
<pubDate>Wed, 20 Nov 2019 00:00:00 +0000</pubDate>
|
||||
|
||||
<guid>https://abdulocra.cy/posts/eidma/</guid>
|
||||
<guid>https://abdulocra.cy/university-notes/eidma/</guid>
|
||||
<description>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false.
|
||||
We should avoid variables when forming statements, as they may change the logical value.
|
||||
\(2=7\) statement \(x=5\) not a statement In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
|
||||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.</description>
|
||||
</item>
|
||||
|
||||
<item>
|
||||
<title>about</title>
|
||||
<link>https://abdulocra.cy/about/</link>
|
||||
<pubDate>Mon, 04 Nov 2019 00:00:00 +0000</pubDate>
|
||||
|
||||
<guid>https://abdulocra.cy/about/</guid>
|
||||
<description> name: Abdulkadir Furkan Şanlı handle: abdulocracy contact: email: me at abdulocra dot cy gpg: 0xEE6ED1FE irc (freenode): abdulocracy </description>
|
||||
</item>
|
||||
|
||||
</channel>
|
||||
</rss>
|
@ -3,37 +3,41 @@
|
||||
xmlns:xhtml="http://www.w3.org/1999/xhtml">
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/about/</loc>
|
||||
<lastmod>2020-06-10T00:00:00+00:00</lastmod>
|
||||
<loc>https://abdulocra.cy/blog/0/</loc>
|
||||
<lastmod>2020-12-25T00:00:00+00:00</lastmod>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/</loc>
|
||||
<lastmod>2020-12-25T00:00:00+00:00</lastmod>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/blog/</loc>
|
||||
<lastmod>2020-12-25T00:00:00+00:00</lastmod>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/university-notes/eidma/</loc>
|
||||
<lastmod>2019-11-20T00:00:00+00:00</lastmod>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/posts/eidma/</loc>
|
||||
<loc>https://abdulocra.cy/university-notes/</loc>
|
||||
<lastmod>2019-11-20T00:00:00+00:00</lastmod>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/posts/</loc>
|
||||
<lastmod>2019-11-20T00:00:00+00:00</lastmod>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/tags/</loc>
|
||||
<lastmod>2019-11-20T00:00:00+00:00</lastmod>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/tags/university-notes/</loc>
|
||||
<lastmod>2019-11-20T00:00:00+00:00</lastmod>
|
||||
<loc>https://abdulocra.cy/about/</loc>
|
||||
<lastmod>2019-11-04T00:00:00+00:00</lastmod>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/categories/</loc>
|
||||
</url>
|
||||
|
||||
<url>
|
||||
<loc>https://abdulocra.cy/tags/</loc>
|
||||
</url>
|
||||
|
||||
</urlset>
|
@ -5,16 +5,18 @@
|
||||
<title>Tags :: abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content="" />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/tags/" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/pink.css">
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
@ -23,25 +25,25 @@
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/img/favicon/favicon.png">
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
<meta name="twitter:title" content="Tags :: abdulocracy's personal site — " />
|
||||
<meta name="twitter:description" content="" />
|
||||
<meta name="twitter:site" content="https://abdulocra.cy/" />
|
||||
<meta name="twitter:creator" content="" />
|
||||
<meta name="twitter:image" content="">
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="website" />
|
||||
<meta property="og:title" content="Tags :: abdulocracy's personal site — ">
|
||||
<meta property="og:title" content="Tags :: abdulocracy's personal site">
|
||||
<meta property="og:description" content="" />
|
||||
<meta property="og:url" content="https://abdulocra.cy/tags/" />
|
||||
<meta property="og:site_name" content="Tags" />
|
||||
<meta property="og:image" content="">
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
@ -60,10 +62,10 @@
|
||||
|
||||
|
||||
</head>
|
||||
<body class="">
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center">
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
@ -97,7 +99,7 @@
|
||||
|
||||
|
||||
|
||||
<li><a href="/tags/university-notes">university notes</a></li>
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
@ -119,7 +121,7 @@
|
||||
|
||||
|
||||
|
||||
<li><a href="/tags/university-notes">university notes</a></li>
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
@ -132,22 +134,12 @@
|
||||
|
||||
<div class="content">
|
||||
|
||||
<div class="posts">
|
||||
<div class="terms">
|
||||
<h1>Tags</h1>
|
||||
<ul>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="pagination">
|
||||
<div class="pagination__buttons">
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</ul>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
@ -155,18 +147,14 @@
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2019 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a></span>
|
||||
|
||||
<span>:: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/assets/prism.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
@ -183,8 +171,6 @@
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
|
@ -5,21 +5,6 @@
|
||||
<link>https://abdulocra.cy/tags/</link>
|
||||
<description>Recent content in Tags on abdulocracy's personal site</description>
|
||||
<generator>Hugo -- gohugo.io</generator>
|
||||
<language>en-us</language>
|
||||
<copyright>© Abdulkadir Furkan Şanlı 2019</copyright>
|
||||
<lastBuildDate>Wed, 20 Nov 2019 00:00:00 +0000</lastBuildDate>
|
||||
|
||||
<atom:link href="https://abdulocra.cy/tags/index.xml" rel="self" type="application/rss+xml" />
|
||||
|
||||
|
||||
<item>
|
||||
<title>university-notes</title>
|
||||
<link>https://abdulocra.cy/tags/university-notes/</link>
|
||||
<pubDate>Wed, 20 Nov 2019 00:00:00 +0000</pubDate>
|
||||
|
||||
<guid>https://abdulocra.cy/tags/university-notes/</guid>
|
||||
<description></description>
|
||||
</item>
|
||||
|
||||
<language>en-us</language><atom:link href="https://abdulocra.cy/tags/index.xml" rel="self" type="application/rss+xml" />
|
||||
</channel>
|
||||
</rss>
|
443
public/university-notes/eidma/index.html
Normal file
443
public/university-notes/eidma/index.html
Normal file
@ -0,0 +1,443 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
|
||||
<title>Introduction to Discrete Mathematics :: abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false.
|
||||
We should avoid variables when forming statements, as they may change the logical value.
|
||||
\(2=7\) statement \(x=5\) not a statement In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
|
||||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/university-notes/eidma/" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="article" />
|
||||
<meta property="og:title" content="Introduction to Discrete Mathematics :: abdulocracy's personal site">
|
||||
<meta property="og:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false.
|
||||
We should avoid variables when forming statements, as they may change the logical value.
|
||||
\(2=7\) statement \(x=5\) not a statement In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
|
||||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
|
||||
<meta property="og:url" content="https://abdulocra.cy/university-notes/eidma/" />
|
||||
<meta property="og:site_name" content="Introduction to Discrete Mathematics" />
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
|
||||
<meta property="article:published_time" content="2019-11-20 00:00:00 +0000 UTC" />
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</head>
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
<div class="header__logo">
|
||||
<a href="/">
|
||||
<div class="logo">
|
||||
abdulocracy
|
||||
</div>
|
||||
</a>
|
||||
|
||||
</div>
|
||||
<div class="menu-trigger">menu</div>
|
||||
</div>
|
||||
|
||||
<nav class="menu">
|
||||
<ul class="menu__inner menu__inner--desktop">
|
||||
|
||||
|
||||
|
||||
<ul class="menu__sub-inner">
|
||||
<li class="menu__sub-inner-more-trigger">menu ▾</li>
|
||||
|
||||
<ul class="menu__sub-inner-more hidden">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
|
||||
<ul class="menu__inner menu__inner--mobile">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
</nav>
|
||||
|
||||
|
||||
</header>
|
||||
|
||||
|
||||
<div class="content">
|
||||
|
||||
<div class="post">
|
||||
<h1 class="post-title">
|
||||
<a href="https://abdulocra.cy/university-notes/eidma/">Introduction to Discrete Mathematics</a></h1>
|
||||
<div class="post-meta">
|
||||
|
||||
<span class="post-date">
|
||||
2019-11-20 [updated: 2019-11-20]
|
||||
</span>
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="post-content"><div>
|
||||
<ul>
|
||||
<li>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.</li>
|
||||
</ul>
|
||||
<h2 id="propositional-calculus">Propositional calculus<a href="#propositional-calculus" class="hanchor" ariaLabel="Anchor">⌗</a> </h2>
|
||||
<ul>
|
||||
<li><p>Comes from the linguistic concept that things can be either true or false.</p></li>
|
||||
<li><p>We should avoid variables when forming statements, as they may change the logical value.</p>
|
||||
<ul>
|
||||
<li><span class="math inline">\(2=7\)</span> statement</li>
|
||||
<li><span class="math inline">\(x=5\)</span> not a statement</li>
|
||||
</ul></li>
|
||||
<li><p>In logic we do not use the equals sign, we use the equivalence sign <span class="math inline">\(\equiv\)</span>.</p></li>
|
||||
<li><p>Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).</p></li>
|
||||
<li><p>When doing logic, we use propositional variables (e.g. p, q, r).</p>
|
||||
<ul>
|
||||
<li>Can be either <strong>true</strong> or <strong>false</strong>.</li>
|
||||
</ul></li>
|
||||
<li><p>The operations done on propositional variables are called propositional connectives.</p>
|
||||
<ul>
|
||||
<li>Conjunction: <span class="math inline">\(p \land q\)</span> is only true if both p and q are true <span class="math inline">\((0001)\)</span></li>
|
||||
<li>Disjunction: <span class="math inline">\(p \lor q\)</span> is only false if both p and q are false <span class="math inline">\((0111)\)</span></li>
|
||||
<li>Implication (material conditional): <span class="math inline">\(p \implies q\)</span> is false only if p is true and q is false (truth table <span class="math inline">\((1011)\)</span>)
|
||||
<ul>
|
||||
<li><span class="math inline">\(\equiv \neg p \lor q\)</span></li>
|
||||
</ul></li>
|
||||
</ul></li>
|
||||
<li><p>Not necessarily connectives but unary operations:</p>
|
||||
<ul>
|
||||
<li>Negation: Denoted by ~, <span class="math inline">\(\neg\)</span> or NOT, negates the one input <span class="math inline">\((10)\)</span>.</li>
|
||||
</ul></li>
|
||||
<li><p>A (propositional) formula is a “properly constructed” logical expression.</p>
|
||||
<ul>
|
||||
<li>e.g. <span class="math inline">\(\neg[(p \lor q)] \land r\)</span></li>
|
||||
<li><span class="math inline">\((p \land)\)</span> is not a formula, as <span class="math inline">\(\land\)</span> requires 2 variables.</li>
|
||||
<li>Logical equivalence: <span class="math inline">\(\phi(p, q, k) \equiv \psi(p, q, k)\)</span>, logical value of <span class="math inline">\(\phi\)</span> is equal to logical value of <span class="math inline">\(\psi\)</span>.</li>
|
||||
<li>Commutativity: <span class="math inline">\(p \land q \equiv q \land p\)</span></li>
|
||||
<li>Associativity: <span class="math inline">\((p \land q) \land r \equiv p \land (q \land r)\)</span></li>
|
||||
<li>Distributivity: <span class="math inline">\(p \land (q \lor r) \equiv (p \land q) \lor (p \land r)\)</span></li>
|
||||
<li>Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
|
||||
<ul>
|
||||
<li><span class="math inline">\(\neg(B \lor C)\)</span> can be written as <span class="math inline">\(\neg B \land \neg C\)</span></li>
|
||||
</ul></li>
|
||||
</ul></li>
|
||||
<li><p>Double negation law: <span class="math inline">\(\neg(\neg p) \equiv p\)</span></p></li>
|
||||
<li><p>De Morgan’s laws: <span class="math inline">\(\neg(p \land q) \equiv \neg p \lor \neg q\)</span> and <span class="math inline">\(\neg(p \lor q) \equiv \neg p \land \neg q\)</span>.</p></li>
|
||||
<li><p>If and only if (<em>iff</em>): <span class="math inline">\(p \iff p \equiv (p \implies q) \land (q \implies p)\)</span></p></li>
|
||||
<li><p>Contraposition law:</p>
|
||||
<ul>
|
||||
<li><span class="math inline">\((p \implies q) \equiv (\neg q \implies \neg p)\)</span> prove by contraposition
|
||||
<ul>
|
||||
<li><span class="math inline">\((p \implies q) \equiv (\neg p \lor q)\)</span></li>
|
||||
<li><span class="math inline">\((\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)\)</span></li>
|
||||
</ul></li>
|
||||
</ul></li>
|
||||
<li><p>Contradiction law:</p>
|
||||
<ul>
|
||||
<li><span class="math inline">\(p \lor \neg p \equiv 1\)</span> and <span class="math inline">\(p \land \neg p \equiv 0\)</span></li>
|
||||
</ul></li>
|
||||
<li><p>Tautology: <span class="math inline">\(\phi (p, q, ... r)\)</span> is a tautology <em>iff</em> <span class="math inline">\(\phi \equiv 1\)</span></p></li>
|
||||
</ul>
|
||||
<h2 id="sets">Sets<a href="#sets" class="hanchor" ariaLabel="Anchor">⌗</a> </h2>
|
||||
<ul>
|
||||
<li>We will consider subsets of universal set <span class="math inline">\(\mathbb X\)</span>
|
||||
<ul>
|
||||
<li><span class="math inline">\(2^\mathbb X = \{ A : A \subseteq \mathbb X\}\)</span></li>
|
||||
<li><span class="math inline">\(2^\mathbb X = P(\mathbb X)\)</span></li>
|
||||
<li>All 2 object subsets of <span class="math inline">\(\mathbb X\)</span>: <span class="math inline">\(P_2(\mathbb X)\)</span></li>
|
||||
</ul></li>
|
||||
<li><span class="math inline">\(A \subset B \equiv\)</span> every element of A is an element of B <span class="math inline">\(\equiv \{x \in \mathbb X : x \in A \implies x \in B\}\)</span></li>
|
||||
<li>Operations on sets:
|
||||
<ul>
|
||||
<li>Union - <span class="math inline">\(\cup\)</span> - <span class="math inline">\(A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}\)</span></li>
|
||||
<li>Intersection - <span class="math inline">\(\cap\)</span> - <span class="math inline">\(A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}\)</span></li>
|
||||
<li>Complement - <span class="math inline">\(A'\)</span> - <span class="math inline">\(A' = \{ x \in \mathbb X : \neg (x \in A) \}\)</span>
|
||||
<ul>
|
||||
<li>If <span class="math inline">\(x = \{ 1 \}\)</span> then <span class="math inline">\(x' = \emptyset\)</span></li>
|
||||
</ul></li>
|
||||
</ul></li>
|
||||
<li>Equality of sets: <span class="math inline">\(A = B\)</span> iff <span class="math inline">\(x \in \mathbb X : (x \in A \iff x \in B)\)</span></li>
|
||||
<li>Difference of sets:
|
||||
<ul>
|
||||
<li><span class="math inline">\(A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'\)</span></li>
|
||||
<li>Symmetric difference: <span class="math inline">\(A \div B = (A \setminus B) \cup (B \setminus A)\)</span></li>
|
||||
</ul></li>
|
||||
<li>Laws of set algebra:
|
||||
<ul>
|
||||
<li><span class="math inline">\(A \cup B = B \cup A , A \cap B = B \cap A\)</span></li>
|
||||
<li><span class="math inline">\((A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)\)</span></li>
|
||||
<li><span class="math inline">\((A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)</span> vice versa</li>
|
||||
<li><span class="math inline">\(A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X\)</span></li>
|
||||
<li><span class="math inline">\((A \cup B)' = A' \cap B'\)</span> vice versa</li>
|
||||
<li><span class="math inline">\(A \cup A' = \mathbb X, A \cap A' = \emptyset\)</span></li>
|
||||
</ul></li>
|
||||
<li>Note: <span class="math inline">\(\{ \emptyset \} \neq \emptyset\)</span>, one is a set with one element, one is the empty set, no elements (<span class="math inline">\(\{ \}\)</span>)</li>
|
||||
<li>Quip: <span class="math inline">\(\{ x \in \mathbb R : x^2 = -1\} = \emptyset\)</span></li>
|
||||
</ul>
|
||||
<h2 id="quantifiers">Quantifiers<a href="#quantifiers" class="hanchor" ariaLabel="Anchor">⌗</a> </h2>
|
||||
<ul>
|
||||
<li><span class="math inline">\(\phi\)</span> - prepositional function: yields only true or false value</li>
|
||||
<li><span class="math inline">\(\forall\)</span> means “for all” and <span class="math inline">\(\exists\)</span> means “there exists”</li>
|
||||
<li><span class="math inline">\(\forall\)</span>:
|
||||
<ul>
|
||||
<li>Shorthand for <span class="math inline">\(\land\)</span> e.g. <span class="math inline">\((\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0\)</span></li>
|
||||
</ul></li>
|
||||
<li><span class="math inline">\(\exists\)</span>:
|
||||
<ul>
|
||||
<li>Shorthand for <span class="math inline">\(\lor\)</span> e.g. <span class="math inline">\((\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5\)</span></li>
|
||||
</ul></li>
|
||||
<li><span class="math inline">\(\neg \forall \equiv \exists\)</span>, vice versa</li>
|
||||
<li>With quantifiers we can write logical statements e.g.
|
||||
<ul>
|
||||
<li><span class="math inline">\((\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y\)</span> is a statement and is false</li>
|
||||
<li><span class="math inline">\((\forall x) (\exists y) x > y\)</span> is true</li>
|
||||
<li>shortcut: <span class="math inline">\((\exists x, y) \equiv (\exists x) (\exists y)\)</span></li>
|
||||
</ul></li>
|
||||
<li>Quantifiers can be expressed in set language, sort of a definition in terms of sets:
|
||||
<ul>
|
||||
<li><span class="math inline">\((\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}\)</span></li>
|
||||
<li><span class="math inline">\((\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset\)</span></li>
|
||||
<li><span class="math inline">\((\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )\)</span></li>
|
||||
</ul></li>
|
||||
<li>Order of quantifiers matters.</li>
|
||||
</ul>
|
||||
<h2 id="relations">Relations<a href="#relations" class="hanchor" ariaLabel="Anchor">⌗</a> </h2>
|
||||
<ul>
|
||||
<li>Cartesian product:
|
||||
<ul>
|
||||
<li><span class="math inline">\(A \times B = \{ (p, q) : p \in A \land q \in B \}\)</span></li>
|
||||
</ul></li>
|
||||
<li>Def: A relation <span class="math inline">\(R\)</span> on a set <span class="math inline">\(\mathbb X\)</span> is a subset of <span class="math inline">\(\mathbb X \times \mathbb X\)</span> (<span class="math inline">\(R \subseteq \mathbb X \times \mathbb X\)</span>)</li>
|
||||
<li>Graph of a function <span class="math inline">\(f()\)</span>: <span class="math inline">\(\{ (x, f(x) : x \in Dom(f) \}\)</span></li>
|
||||
<li>Properties of:
|
||||
<ul>
|
||||
<li>Reflexivity: <span class="math inline">\((\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x\)</span></li>
|
||||
<li>Symmetricity: <span class="math inline">\([ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]\)</span></li>
|
||||
<li>Transitivity: <span class="math inline">\((\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)\)</span></li>
|
||||
<li>Antisymmetricity: <span class="math inline">\((\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)\)</span></li>
|
||||
</ul></li>
|
||||
<li>Equivalence relations:
|
||||
<ul>
|
||||
<li>Def: <span class="math inline">\(R \subseteq \mathbb X \times \mathbb X\)</span> is said to be an equivalence relation <em>iff</em> <span class="math inline">\(R\)</span> is reflexive, symmetric and transitive.</li>
|
||||
<li>Congruence modulo n: <span class="math inline">\(p R q \equiv n | p - q\)</span></li>
|
||||
<li>Def R - and equivalence relation of <span class="math inline">\(\mathbb X\)</span>: The <em>equivalence class</em> of an element <span class="math inline">\(x \in \mathbb X\)</span> is the set <span class="math inline">\([x]_R = \{ y \in \mathbb X : x R y \}\)</span>
|
||||
<ul>
|
||||
<li>Every <span class="math inline">\(x \in \mathbb X\)</span> belongs to the equivalence class of some element <span class="math inline">\(a\)</span>.</li>
|
||||
<li><span class="math inline">\((\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])\)</span></li>
|
||||
</ul></li>
|
||||
</ul></li>
|
||||
<li>Partitions
|
||||
<ul>
|
||||
<li>A partition is a set containing subsets of some set <span class="math inline">\(\mathbb X\)</span> such that their collective symmetric difference equals <span class="math inline">\(\mathbb X\)</span>. A partition of is a set <span class="math inline">\(\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}\)</span> such that:
|
||||
<ul>
|
||||
<li><span class="math inline">\((\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)\)</span></li>
|
||||
<li><span class="math inline">\((\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)\)</span></li>
|
||||
</ul></li>
|
||||
<li><span class="math inline">\(\{ A_i \}_{i \in \mathbb I}\)</span> is a partition <em>iff</em> there exists an equivalence relation <span class="math inline">\(R\)</span> on <span class="math inline">\(\mathbb X\)</span> such that:
|
||||
<ul>
|
||||
<li><span class="math inline">\((\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R\)</span></li>
|
||||
<li><span class="math inline">\((\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j\)</span></li>
|
||||
</ul></li>
|
||||
<li>The quotient set: <span class="math inline">\(\mathbb X / R = \{ [a] : a \in \mathbb X \}\)</span></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
<h2 id="posets">Posets<a href="#posets" class="hanchor" ariaLabel="Anchor">⌗</a> </h2>
|
||||
<ul>
|
||||
<li>Partial orders
|
||||
<ul>
|
||||
<li><span class="math inline">\(\mathbb X\)</span> is a set, <span class="math inline">\(R \subseteq \mathbb X \times \mathbb X\)</span></li>
|
||||
<li>Def: <span class="math inline">\(R\)</span> is a partial order on <span class="math inline">\(\mathbb X\)</span> iff <span class="math inline">\(R\)</span> is:
|
||||
<ul>
|
||||
<li>Reflexive</li>
|
||||
<li>Antisymmetric</li>
|
||||
<li>Transitive</li>
|
||||
</ul></li>
|
||||
<li>Def: <span class="math inline">\(m \in \mathbb X\)</span> is said to be:
|
||||
<ul>
|
||||
<li>maximal element in <span class="math inline">\((\mathbb X, \preccurlyeq)\)</span> iff <span class="math inline">\((\forall a \in \mathbb X) m \preccurlyeq a \implies m = a\)</span></li>
|
||||
<li>largest iff <span class="math inline">\((\forall a \in \mathbb X) (a \preccurlyeq m)\)</span></li>
|
||||
<li>minimal iff <span class="math inline">\((\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)\)</span></li>
|
||||
<li>smallest iff <span class="math inline">\((\forall a \in \mathbb X) (m \preccurlyeq a)\)</span></li>
|
||||
</ul></li>
|
||||
<li>Def: A partial order <span class="math inline">\(R\)</span> on <span class="math inline">\(\mathbb X\)</span> is said to be <em>“total”</em> iff <span class="math inline">\((\forall x, y \in \mathbb X) (x R y \lor y R x)\)</span></li>
|
||||
<li>Def: A subset <span class="math inline">\(B\)</span> of <span class="math inline">\(\mathbb X\)</span> is called a chain <em>“chain”</em> iff <span class="math inline">\(B\)</span> is totally ordered by <span class="math inline">\(R\)</span>
|
||||
<ul>
|
||||
<li><span class="math inline">\(C(\mathbb X)\)</span> - the set of all chains in <span class="math inline">\((\mathbb X, R)\)</span></li>
|
||||
<li>A chain <span class="math inline">\(D\)</span> in <span class="math inline">\((\mathbb X, R)\)</span> is called a maximal chain iff <span class="math inline">\(D\)</span> is a maximal element in <span class="math inline">\((C(\mathbb X), R)\)</span></li>
|
||||
<li><span class="math inline">\(K \subseteq \mathbb X\)</span> is called an antichain in <span class="math inline">\((\mathbb X, R)\)</span> iff <span class="math inline">\((\forall p, q \in K) (p R q \lor q R p \implies p = q)\)</span></li>
|
||||
<li>Def: <span class="math inline">\(R\)</span> is a partial order on <span class="math inline">\(\mathbb X\)</span>, <span class="math inline">\(R\)</span> is called a <em>well</em> order iff <span class="math inline">\(R\)</span> is a total order on <span class="math inline">\(X\)</span> and every nonempty subset <span class="math inline">\(A\)</span> of <span class="math inline">\(\mathbb X\)</span> has the smallest element</li>
|
||||
</ul></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
<h2 id="induction">Induction<a href="#induction" class="hanchor" ariaLabel="Anchor">⌗</a> </h2>
|
||||
<ul>
|
||||
<li>If <span class="math inline">\(\phi\)</span> is a propositional function defined on <span class="math inline">\(\mathbb N\)</span>, if:
|
||||
<ul>
|
||||
<li><span class="math inline">\(\phi(1)\)</span></li>
|
||||
<li><span class="math inline">\((\forall n \geq 1) \phi(n) \implies \phi(n+1)\)</span></li>
|
||||
<li><span class="math inline">\((\forall k \geq 1) \phi(k)\)</span></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
<h2 id="functions">Functions<a href="#functions" class="hanchor" ariaLabel="Anchor">⌗</a> </h2>
|
||||
<ul>
|
||||
<li><span class="math inline">\(f: \mathbb X \to \mathbb Y\)</span></li>
|
||||
<li>Def: <span class="math inline">\(f \subseteq \mathbb X \times \mathbb Y\)</span> is said to be a function if:
|
||||
<ul>
|
||||
<li><span class="math inline">\((\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))\)</span></li>
|
||||
<li><span class="math inline">\((\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)\)</span></li>
|
||||
</ul></li>
|
||||
<li>Types of functions <span class="math inline">\(f: \mathbb X \to \mathbb Y\)</span>:
|
||||
<ul>
|
||||
<li><span class="math inline">\(f\)</span> is said to be an injection ( 1 to 1 function) iff <span class="math inline">\((\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)\)</span></li>
|
||||
<li><span class="math inline">\(f\)</span> is said to be a surjection (onto function) iff <span class="math inline">\((\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y\)</span></li>
|
||||
<li>If <span class="math inline">\(f^{-1}\)</span> is a function from <span class="math inline">\(\mathbb Y \to \mathbb X\)</span> then <span class="math inline">\(f^{-1}\)</span> is called the inverse function for <span class="math inline">\(f\)</span>
|
||||
<ul>
|
||||
<li>Fact: <span class="math inline">\(f^{-1}\)</span> is a function iff <span class="math inline">\(f\)</span> is a <em>bijection</em> (1 to 1 and onto)</li>
|
||||
</ul></li>
|
||||
</ul></li>
|
||||
<li>For some set <span class="math inline">\(\mathbb A\)</span> the image of <span class="math inline">\(\mathbb A\)</span> by <span class="math inline">\(f\)</span> is <span class="math inline">\(f(\mathbb A) = \{ f(x) : x \in \mathbb A \}\)</span>. We can also define the inverse of an image even when the function itself isn’t invertible: <span class="math inline">\(f^{-1}(\mathbb A)\)</span></li>
|
||||
</ul>
|
||||
<h2 id="combinatorics">Combinatorics<a href="#combinatorics" class="hanchor" ariaLabel="Anchor">⌗</a> </h2>
|
||||
<ul>
|
||||
<li><span class="math inline">\(|\mathbb A|\)</span> size (number of elements) of <span class="math inline">\(\mathbb A\)</span></li>
|
||||
<li>Rule of addition:
|
||||
<ul>
|
||||
<li>If <span class="math inline">\(\mathbb A, \mathbb B \subseteq \mathbb X\)</span> and <span class="math inline">\(|\mathbb A|, |\mathbb B| \in \mathbb N\)</span> and <span class="math inline">\(\mathbb A \cap \mathbb B = \emptyset\)</span> then <span class="math inline">\(|\mathbb A \cup \mathbb B| = |\mathbb A| + |\mathbb B|\)</span></li>
|
||||
<li>Can be generalized as: <span class="math display">\[
|
||||
(\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land \\
|
||||
|\mathbb{A}_1|, |\mathbb{A}_2|, ..., |\mathbb{A}_n| \in \mathbb{N} \implies \\
|
||||
(\forall i, j \in \{1, 2, ..., n \})(i \neq j \implies \mathbb{A}_i \cap \mathbb{A}_j = \emptyset)
|
||||
\]</span></li>
|
||||
</ul></li>
|
||||
<li>Rule of multiplication:
|
||||
<ul>
|
||||
<li><span class="math inline">\(\mathbb{A}, \mathbb{B} \subseteq \mathbb{X}, |\mathbb{A} \times \mathbb{B}| = |\mathbb{A}| \cdot |\mathbb{B}|\)</span></li>
|
||||
<li>Can be generalized as: <span class="math display">\[
|
||||
(\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land |\mathbb{A}_i| \in \mathbb{N} \implies \\
|
||||
|\mathbb{A}_1 \times \mathbb{A}_2 \times ... \times \mathbb{A}_n| = |\mathbb{A}_1| \cdot |\mathbb{A}_2| \cdot ... \cdot |\mathbb{A_n}|
|
||||
\]</span></li>
|
||||
</ul></li>
|
||||
</ul>
|
||||
|
||||
</div></div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css"
|
||||
integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js"
|
||||
integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz"
|
||||
crossorigin="anonymous"></script>
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js"
|
||||
integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
|
||||
onload="renderMathInElement(document.body);"></script>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
</html>
|
215
public/university-notes/index.html
Normal file
215
public/university-notes/index.html
Normal file
@ -0,0 +1,215 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
|
||||
<title>University-notes :: abdulocracy's personal site</title>
|
||||
|
||||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<meta name="description" content="" />
|
||||
<meta name="keywords" content="" />
|
||||
<meta name="robots" content="noodp" />
|
||||
<link rel="canonical" href="https://abdulocra.cy/university-notes/" />
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||||
|
||||
<link rel="stylesheet" href="https://abdulocra.cy/assets/green.css">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||||
|
||||
<link rel="shortcut icon" href="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
|
||||
<meta name="twitter:card" content="summary" />
|
||||
|
||||
|
||||
|
||||
<meta property="og:locale" content="en" />
|
||||
<meta property="og:type" content="website" />
|
||||
<meta property="og:title" content="University-notes :: abdulocracy's personal site">
|
||||
<meta property="og:description" content="" />
|
||||
<meta property="og:url" content="https://abdulocra.cy/university-notes/" />
|
||||
<meta property="og:site_name" content="University-notes" />
|
||||
|
||||
|
||||
<meta property="og:image" content="https://abdulocra.cy/favicon.png">
|
||||
|
||||
|
||||
<meta property="og:image:width" content="2048">
|
||||
<meta property="og:image:height" content="1024">
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link href="/university-notes/index.xml" rel="alternate" type="application/rss+xml" title="abdulocracy's personal site" />
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
</head>
|
||||
<body class="green">
|
||||
|
||||
|
||||
<div class="container center headings--one-size">
|
||||
|
||||
<header class="header">
|
||||
<div class="header__inner">
|
||||
<div class="header__logo">
|
||||
<a href="/">
|
||||
<div class="logo">
|
||||
abdulocracy
|
||||
</div>
|
||||
</a>
|
||||
|
||||
</div>
|
||||
<div class="menu-trigger">menu</div>
|
||||
</div>
|
||||
|
||||
<nav class="menu">
|
||||
<ul class="menu__inner menu__inner--desktop">
|
||||
|
||||
|
||||
|
||||
<ul class="menu__sub-inner">
|
||||
<li class="menu__sub-inner-more-trigger">menu ▾</li>
|
||||
|
||||
<ul class="menu__sub-inner-more hidden">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
</ul>
|
||||
</ul>
|
||||
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
|
||||
<ul class="menu__inner menu__inner--mobile">
|
||||
|
||||
|
||||
<li><a href="/about">about</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="https://music.abdulocra.cy">music</a></li>
|
||||
|
||||
|
||||
|
||||
<li><a href="/university-notes">university notes</a></li>
|
||||
|
||||
|
||||
|
||||
</ul>
|
||||
</nav>
|
||||
|
||||
|
||||
</header>
|
||||
|
||||
|
||||
<div class="content">
|
||||
|
||||
|
||||
<div class="posts">
|
||||
|
||||
<div class="post on-list">
|
||||
<h1 class="post-title">
|
||||
<a href="https://abdulocra.cy/university-notes/eidma/">Introduction to Discrete Mathematics</a>
|
||||
</h1>
|
||||
<div class="post-meta">
|
||||
<span class="post-date">
|
||||
2019-11-20
|
||||
</span>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<div class="post-content">
|
||||
|
||||
|
||||
Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false.
|
||||
We should avoid variables when forming statements, as they may change the logical value.
|
||||
(2=7) statement (x=5) not a statement In logic we do not use the equals sign, we use the equivalence sign (\equiv).
|
||||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<div>
|
||||
<a class="read-more button"
|
||||
href="/university-notes/eidma/">more →</a>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<div class="pagination">
|
||||
<div class="pagination__buttons">
|
||||
|
||||
|
||||
</div>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
|
||||
<footer class="footer">
|
||||
<div class="footer__inner">
|
||||
<div class="copyright copyright--user">
|
||||
<span>© Abdulkadir Furkan Şanlı 2020 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||||
BY-ND</a> :: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||||
</div>
|
||||
</footer>
|
||||
|
||||
<script src="https://abdulocra.cy/%20assets/main.js"></script>
|
||||
<script src="https://abdulocra.cy/%20assets/prism.js"></script>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css"
|
||||
integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js"
|
||||
integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz"
|
||||
crossorigin="anonymous"></script>
|
||||
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js"
|
||||
integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
|
||||
onload="renderMathInElement(document.body);"></script>
|
||||
|
||||
|
||||
|
||||
</div>
|
||||
|
||||
</body>
|
||||
</html>
|
23
public/university-notes/index.xml
Normal file
23
public/university-notes/index.xml
Normal file
@ -0,0 +1,23 @@
|
||||
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
|
||||
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
|
||||
<channel>
|
||||
<title>University-notes on abdulocracy's personal site</title>
|
||||
<link>https://abdulocra.cy/university-notes/</link>
|
||||
<description>Recent content in University-notes on abdulocracy's personal site</description>
|
||||
<generator>Hugo -- gohugo.io</generator>
|
||||
<language>en-us</language>
|
||||
<lastBuildDate>Wed, 20 Nov 2019 00:00:00 +0000</lastBuildDate><atom:link href="https://abdulocra.cy/university-notes/index.xml" rel="self" type="application/rss+xml" />
|
||||
<item>
|
||||
<title>Introduction to Discrete Mathematics</title>
|
||||
<link>https://abdulocra.cy/university-notes/eidma/</link>
|
||||
<pubDate>Wed, 20 Nov 2019 00:00:00 +0000</pubDate>
|
||||
|
||||
<guid>https://abdulocra.cy/university-notes/eidma/</guid>
|
||||
<description>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false.
|
||||
We should avoid variables when forming statements, as they may change the logical value.
|
||||
\(2=7\) statement \(x=5\) not a statement In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
|
||||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.</description>
|
||||
</item>
|
||||
|
||||
</channel>
|
||||
</rss>
|
1
public/university-notes/page/1/index.html
Normal file
1
public/university-notes/page/1/index.html
Normal file
@ -0,0 +1 @@
|
||||
<!DOCTYPE html><html><head><title>https://abdulocra.cy/university-notes/</title><link rel="canonical" href="https://abdulocra.cy/university-notes/"/><meta name="robots" content="noindex"><meta charset="utf-8" /><meta http-equiv="refresh" content="0; url=https://abdulocra.cy/university-notes/" /></head></html>
|
@ -1 +1 @@
|
||||
Subproject commit 2ea0eeeb7ac8f76e6e39edd98772db1ff66df9ec
|
||||
Subproject commit 9f2097f3f027ed0abde9059cbf98b4bbb2d09510
|
Loading…
Reference in New Issue
Block a user