Update EIDMA.mmark
Signed-off-by: Abdulkadir Furkan Şanlı <abdulkadirfsanli@protonmail.com>
This commit is contained in:
parent
8a30ed4fde
commit
5b7fad7a59
@ -137,3 +137,31 @@ markup = "mmark"
|
|||||||
- $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$$
|
- $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$$
|
||||||
|
|
||||||
- The quotient set: $$\mathbb X / R = \{ [a] : a \in \mathbb X \}$$
|
- The quotient set: $$\mathbb X / R = \{ [a] : a \in \mathbb X \}$$
|
||||||
|
|
||||||
|
## Posets
|
||||||
|
|
||||||
|
- Partial orders
|
||||||
|
- $$\mathbb X$$ is a set, $$R \subseteq \mathbb X \times \mathbb X$$
|
||||||
|
- Def: $$R$$ is a partial order on $$\mathbb X$$ iff $$R$$ is:
|
||||||
|
- Reflexive
|
||||||
|
- Antisymmetric
|
||||||
|
- Transitive
|
||||||
|
|
||||||
|
- Def: $$m \in \mathbb X$$ is said to be:
|
||||||
|
- maximal element in $$(\mathbb X, \preccurlyeq)$$ iff $$(\forall a \in \mathbb X) m \preccurlyeq a \implies m = a$$
|
||||||
|
- largest iff $$(\forall a \in \mathbb X) (a \preccurlyeq m)$$
|
||||||
|
- minimal iff $$(\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)$$
|
||||||
|
- smallest iff $$(\forall a \in \mathbb X) (m \preccurlyeq a)$$
|
||||||
|
|
||||||
|
- Def: A partial order $$R$$ on $$\mathbb X$$ is said to be *"total"* iff $$(\forall x, y \in \mathbb X) (x R y \lor y R x)$$
|
||||||
|
- Def: A subset $$B$$ of $$\mathbb X$$ is called a chain *"chain"* iff $$B$$ is totally ordered by $$R$$
|
||||||
|
- $$C(\mathbb X)$$ - the set of all chains in $$(\mathbb X, R)$$
|
||||||
|
- A chain $$D$$ in $$(\mathbb X, R)$$ is called a maximal chain iff $$D$$ is a maximal element in $$(C(\mathbb X), R)$$
|
||||||
|
- $$K \subseteq \mathbb X$$ is called an antichain in $$(\mathbb X, R)$$ iff $$(\forall p, q \in K) (p R q \lor q R p \implies p = q)$$
|
||||||
|
- Def: $$R$$ is a partial order on $$\mathbb X$$, $$R$$ is called a *well* order iff $$R$$ is a total order on $$X$$ and every nonempty subset $$A$$ of $$\mathbb X$$ has the smallest element
|
||||||
|
|
||||||
|
## Induction
|
||||||
|
- If $$\phi$$ is a propositional function defined on $$\mathbb N$$, if:
|
||||||
|
- $$\phi(1)$$
|
||||||
|
- $$(\forall n \geq 1) (\phi(n) \implies \phi(n+1)$$
|
||||||
|
- $$(\forall k \geq 1) \phi(k)$$
|
||||||
|
Loading…
Reference in New Issue
Block a user