Update EIDMA.mmark

Signed-off-by: Abdulkadir Furkan Şanlı <abdulkadirfsanli@protonmail.com>
This commit is contained in:
Abdulkadir Furkan Şanlı 2019-11-07 10:20:07 +01:00
parent 8a30ed4fde
commit 5b7fad7a59
No known key found for this signature in database
GPG Key ID: 7823BD18E6F95D73

View File

@ -137,3 +137,31 @@ markup = "mmark"
- $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$$ - $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$$
- The quotient set: $$\mathbb X / R = \{ [a] : a \in \mathbb X \}$$ - The quotient set: $$\mathbb X / R = \{ [a] : a \in \mathbb X \}$$
## Posets
- Partial orders
- $$\mathbb X$$ is a set, $$R \subseteq \mathbb X \times \mathbb X$$
- Def: $$R$$ is a partial order on $$\mathbb X$$ iff $$R$$ is:
- Reflexive
- Antisymmetric
- Transitive
- Def: $$m \in \mathbb X$$ is said to be:
- maximal element in $$(\mathbb X, \preccurlyeq)$$ iff $$(\forall a \in \mathbb X) m \preccurlyeq a \implies m = a$$
- largest iff $$(\forall a \in \mathbb X) (a \preccurlyeq m)$$
- minimal iff $$(\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)$$
- smallest iff $$(\forall a \in \mathbb X) (m \preccurlyeq a)$$
- Def: A partial order $$R$$ on $$\mathbb X$$ is said to be *"total"* iff $$(\forall x, y \in \mathbb X) (x R y \lor y R x)$$
- Def: A subset $$B$$ of $$\mathbb X$$ is called a chain *"chain"* iff $$B$$ is totally ordered by $$R$$
- $$C(\mathbb X)$$ - the set of all chains in $$(\mathbb X, R)$$
- A chain $$D$$ in $$(\mathbb X, R)$$ is called a maximal chain iff $$D$$ is a maximal element in $$(C(\mathbb X), R)$$
- $$K \subseteq \mathbb X$$ is called an antichain in $$(\mathbb X, R)$$ iff $$(\forall p, q \in K) (p R q \lor q R p \implies p = q)$$
- Def: $$R$$ is a partial order on $$\mathbb X$$, $$R$$ is called a *well* order iff $$R$$ is a total order on $$X$$ and every nonempty subset $$A$$ of $$\mathbb X$$ has the smallest element
## Induction
- If $$\phi$$ is a propositional function defined on $$\mathbb N$$, if:
- $$\phi(1)$$
- $$(\forall n \geq 1) (\phi(n) \implies \phi(n+1)$$
- $$(\forall k \geq 1) \phi(k)$$