Regen site
Signed-off-by: Abdulkadir Furkan Şanlı <abdulkadirfsanli@protonmail.com>
This commit is contained in:
		@@ -384,6 +384,56 @@
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
<li><p>The quotient set: <span  class="math">\(\mathbb X / R = \{ [a] : a \in \mathbb X \}\)</span></p></li>
 | 
					<li><p>The quotient set: <span  class="math">\(\mathbb X / R = \{ [a] : a \in \mathbb X \}\)</span></p></li>
 | 
				
			||||||
</ul></li>
 | 
					</ul></li>
 | 
				
			||||||
 | 
					</ul>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<h2 id="posets">Posets</h2>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<ul>
 | 
				
			||||||
 | 
					<li><p>Partial orders</p>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<ul>
 | 
				
			||||||
 | 
					<li><span  class="math">\(\mathbb X\)</span> is a set, <span  class="math">\(R \subseteq \mathbb X \times \mathbb X\)</span></li>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<li><p>Def: <span  class="math">\(R\)</span> is a partial order on <span  class="math">\(\mathbb X\)</span> iff <span  class="math">\(R\)</span> is:</p>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<ul>
 | 
				
			||||||
 | 
					<li>Reflexive</li>
 | 
				
			||||||
 | 
					<li>Antisymmetric</li>
 | 
				
			||||||
 | 
					<li>Transitive</li>
 | 
				
			||||||
 | 
					</ul></li>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<li><p>Def: <span  class="math">\(m \in \mathbb X\)</span> is said to be:</p>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<ul>
 | 
				
			||||||
 | 
					<li>maximal element in <span  class="math">\((\mathbb X, \preccurlyeq)\)</span> iff <span  class="math">\((\forall a \in \mathbb X) m \preccurlyeq a \implies m = a\)</span></li>
 | 
				
			||||||
 | 
					<li>largest iff <span  class="math">\((\forall a \in \mathbb X) (a \preccurlyeq m)\)</span></li>
 | 
				
			||||||
 | 
					<li>minimal iff <span  class="math">\((\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)\)</span></li>
 | 
				
			||||||
 | 
					<li>smallest iff <span  class="math">\((\forall a \in \mathbb X) (m \preccurlyeq a)\)</span></li>
 | 
				
			||||||
 | 
					</ul></li>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<li><p>Def: A partial order <span  class="math">\(R\)</span> on <span  class="math">\(\mathbb X\)</span> is said to be <em>"total"</em> iff <span  class="math">\((\forall x, y \in \mathbb X) (x R y \lor y R x)\)</span></p></li>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<li><p>Def: A subset <span  class="math">\(B\)</span> of <span  class="math">\(\mathbb X\)</span> is called a chain <em>"chain"</em> iff <span  class="math">\(B\)</span> is totally ordered by <span  class="math">\(R\)</span></p>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<ul>
 | 
				
			||||||
 | 
					<li><span  class="math">\(C(\mathbb X)\)</span> - the set of all chains in <span  class="math">\((\mathbb X, R)\)</span></li>
 | 
				
			||||||
 | 
					<li>A chain <span  class="math">\(D\)</span> in <span  class="math">\((\mathbb X, R)\)</span> is called a maximal chain iff <span  class="math">\(D\)</span> is a maximal element in <span  class="math">\((C(\mathbb X), R)\)</span></li>
 | 
				
			||||||
 | 
					<li><span  class="math">\(K \subseteq \mathbb X\)</span> is called an antichain in <span  class="math">\((\mathbb X, R)\)</span> iff <span  class="math">\((\forall p, q \in K) (p R q \lor q R p \implies p = q)\)</span></li>
 | 
				
			||||||
 | 
					<li>Def: <span  class="math">\(R\)</span> is a partial order on <span  class="math">\(\mathbb X\)</span>, <span  class="math">\(R\)</span> is called a <em>well</em> order iff <span  class="math">\(R\)</span> is a total order on <span  class="math">\(X\)</span> and every nonempty subset <span  class="math">\(A\)</span> of <span  class="math">\(\mathbb X\)</span> has the smallest element</li>
 | 
				
			||||||
 | 
					</ul></li>
 | 
				
			||||||
 | 
					</ul></li>
 | 
				
			||||||
 | 
					</ul>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<h2 id="induction">Induction</h2>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<ul>
 | 
				
			||||||
 | 
					<li>If <span  class="math">\(\phi\)</span> is a propositional function defined on <span  class="math">\(\mathbb N\)</span>, if:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					<ul>
 | 
				
			||||||
 | 
					<li><span  class="math">\(\phi(1)\)</span></li>
 | 
				
			||||||
 | 
					<li><span  class="math">\((\forall n \geq 1) (\phi(n) \implies \phi(n+1)\)</span></li>
 | 
				
			||||||
 | 
					<li><span  class="math">\((\forall k \geq 1) \phi(k)\)</span></li>
 | 
				
			||||||
 | 
					</ul></li>
 | 
				
			||||||
</ul>
 | 
					</ul>
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  </div>
 | 
					  </div>
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user