Edit eidma.mmark and regen
This commit is contained in:
		@@ -115,10 +115,10 @@ markup = "mmark"
 | 
			
		||||
- Def: A relation $$R$$ on a set $$\mathbb X$$ is a subset of $$\mathbb X \times \mathbb X$$ ($$R \subseteq \mathbb X \times \mathbb X$$)
 | 
			
		||||
- Graph of a function $$f()$$: $$\{ (x, f(x) : x \in Dom(f) \}$$
 | 
			
		||||
- Properties of:
 | 
			
		||||
	1. Reflexivity: $$(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x$$
 | 
			
		||||
	2. Symmetricity: $$[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$$
 | 
			
		||||
	3. Transitivity: $$(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$$
 | 
			
		||||
	4. Antisymmetricity: $$(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$$
 | 
			
		||||
	- Reflexivity: $$(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x$$
 | 
			
		||||
	- Symmetricity: $$[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$$
 | 
			
		||||
	- Transitivity: $$(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$$
 | 
			
		||||
	- Antisymmetricity: $$(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$$
 | 
			
		||||
 | 
			
		||||
- Equivalence relations:
 | 
			
		||||
	- Def: $$R \subseteq \mathbb X \times \mathbb X$$ is said to be an equivalence relation *iff* $$R$$ is reflexive, symmetric and transitive.
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user