Edit eidma.mmark and regen
This commit is contained in:
parent
015ab76c04
commit
954dfc1f36
@ -115,10 +115,10 @@ markup = "mmark"
|
|||||||
- Def: A relation $$R$$ on a set $$\mathbb X$$ is a subset of $$\mathbb X \times \mathbb X$$ ($$R \subseteq \mathbb X \times \mathbb X$$)
|
- Def: A relation $$R$$ on a set $$\mathbb X$$ is a subset of $$\mathbb X \times \mathbb X$$ ($$R \subseteq \mathbb X \times \mathbb X$$)
|
||||||
- Graph of a function $$f()$$: $$\{ (x, f(x) : x \in Dom(f) \}$$
|
- Graph of a function $$f()$$: $$\{ (x, f(x) : x \in Dom(f) \}$$
|
||||||
- Properties of:
|
- Properties of:
|
||||||
1. Reflexivity: $$(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x$$
|
- Reflexivity: $$(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x$$
|
||||||
2. Symmetricity: $$[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$$
|
- Symmetricity: $$[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$$
|
||||||
3. Transitivity: $$(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$$
|
- Transitivity: $$(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$$
|
||||||
4. Antisymmetricity: $$(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$$
|
- Antisymmetricity: $$(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$$
|
||||||
|
|
||||||
- Equivalence relations:
|
- Equivalence relations:
|
||||||
- Def: $$R \subseteq \mathbb X \times \mathbb X$$ is said to be an equivalence relation *iff* $$R$$ is reflexive, symmetric and transitive.
|
- Def: $$R \subseteq \mathbb X \times \mathbb X$$ is said to be an equivalence relation *iff* $$R$$ is reflexive, symmetric and transitive.
|
||||||
|
@ -345,12 +345,12 @@
|
|||||||
|
|
||||||
<li><p>Properties of:</p>
|
<li><p>Properties of:</p>
|
||||||
|
|
||||||
<ol>
|
<ul>
|
||||||
<li>Reflexivity: <span class="math">\((\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x\)</span></li>
|
<li>Reflexivity: <span class="math">\((\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x\)</span></li>
|
||||||
<li>Symmetricity: <span class="math">\([ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]\)</span></li>
|
<li>Symmetricity: <span class="math">\([ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]\)</span></li>
|
||||||
<li>Transitivity: <span class="math">\((\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)\)</span></li>
|
<li>Transitivity: <span class="math">\((\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)\)</span></li>
|
||||||
<li>Antisymmetricity: <span class="math">\((\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)\)</span></li>
|
<li>Antisymmetricity: <span class="math">\((\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)\)</span></li>
|
||||||
</ol></li>
|
</ul></li>
|
||||||
|
|
||||||
<li><p>Equivalence relations:</p>
|
<li><p>Equivalence relations:</p>
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user