Update eidma
Signed-off-by: Abdulkadir Furkan Şanlı <abdulkadirfsanli@protonmail.com>
This commit is contained in:
		@@ -35,7 +35,7 @@
 | 
			
		||||
 \(2=7\) statement \(x=5\) not a statement  In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
 | 
			
		||||
 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
 | 
			
		||||
<meta name="twitter:site" content="https://abdulocra.cy/" />
 | 
			
		||||
<meta name="twitter:creator" content="Abdulkadir" />
 | 
			
		||||
<meta name="twitter:creator" content="" />
 | 
			
		||||
<meta name="twitter:image" content="">
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -51,7 +51,7 @@
 | 
			
		||||
<meta property="og:image:width" content="2048">
 | 
			
		||||
<meta property="og:image:height" content="1024">
 | 
			
		||||
 | 
			
		||||
<meta property="article:published_time" content="2019-11-04 00:00:00 +0000 UTC" />
 | 
			
		||||
<meta property="article:published_time" content="2019-11-20 00:00:00 +0000 UTC" />
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -134,14 +134,10 @@
 | 
			
		||||
  <div class="post-meta">
 | 
			
		||||
      
 | 
			
		||||
    <span class="post-date">
 | 
			
		||||
      2019-11-04
 | 
			
		||||
      2019-11-20
 | 
			
		||||
    </span>
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
    <span class="post-author">::
 | 
			
		||||
      Abdulkadir
 | 
			
		||||
    </span>
 | 
			
		||||
    
 | 
			
		||||
  </div>
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
@@ -431,9 +427,36 @@
 | 
			
		||||
 | 
			
		||||
<ul>
 | 
			
		||||
<li><span  class="math">\(\phi(1)\)</span></li>
 | 
			
		||||
<li><span  class="math">\((\forall n \geq 1) (\phi(n) \implies \phi(n+1)\)</span></li>
 | 
			
		||||
<li><span  class="math">\((\forall n \geq 1) \phi(n) \implies \phi(n+1)\)</span></li>
 | 
			
		||||
<li><span  class="math">\((\forall k \geq 1) \phi(k)\)</span></li>
 | 
			
		||||
</ul></li>
 | 
			
		||||
</ul>
 | 
			
		||||
 | 
			
		||||
<h2 id="functions">Functions</h2>
 | 
			
		||||
 | 
			
		||||
<ul>
 | 
			
		||||
<li><span  class="math">\(f: \mathbb X \to \mathbb Y\)</span></li>
 | 
			
		||||
 | 
			
		||||
<li><p>Def: <span  class="math">\(f \subseteq \mathbb X \times \mathbb Y\)</span> is said to be a function if:</p>
 | 
			
		||||
 | 
			
		||||
<ul>
 | 
			
		||||
<li><span  class="math">\((\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))\)</span></li>
 | 
			
		||||
<li><span  class="math">\((\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)\)</span></li>
 | 
			
		||||
</ul></li>
 | 
			
		||||
 | 
			
		||||
<li><p>Types of functions <span  class="math">\(f: \mathbb X \to \mathbb Y\)</span>:</p>
 | 
			
		||||
 | 
			
		||||
<ul>
 | 
			
		||||
<li><span  class="math">\(f\)</span> is said to be an injection ( 1 to 1 function) iff <span  class="math">\((\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)\)</span></li>
 | 
			
		||||
<li><span  class="math">\(f\)</span> is said to be a surjection (onto function) iff <span  class="math">\((\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y\)</span></li>
 | 
			
		||||
<li>If <span  class="math">\(f^{-1}\)</span> is a function from <span  class="math">\(\mathbb Y \to \mathbb X\)</span> then <span  class="math">\(f^{-1}\)</span> is called the inverse function for <span  class="math">\(f\)</span>
 | 
			
		||||
 | 
			
		||||
<ul>
 | 
			
		||||
<li>Fact: <span  class="math">\(f^{-1}\)</span> is a function iff <span  class="math">\(f\)</span> is a <em>bijection</em> (1 to 1 and onto)</li>
 | 
			
		||||
</ul></li>
 | 
			
		||||
</ul></li>
 | 
			
		||||
 | 
			
		||||
<li><p>For some set <span  class="math">\(\mathbb A\)</span> the image of <span  class="math">\(\mathbb A\)</span> by <span  class="math">\(f\)</span> is <span  class="math">\(f(\mathbb A) = \{ f(x) : x \in \mathbb A \}\)</span>. We can also define the inverse of an image even when the function itself isn't invertible: <span  class="math">\(f^{-1}(\mathbb A)\)</span></p></li>
 | 
			
		||||
</ul>
 | 
			
		||||
 | 
			
		||||
  </div>
 | 
			
		||||
 
 | 
			
		||||
@@ -138,10 +138,9 @@
 | 
			
		||||
      <a href="https://abdulocra.cy/posts/eidma/">Introduction to Discrete Mathematics</a></h1>
 | 
			
		||||
    <div class="post-meta">
 | 
			
		||||
      <span class="post-date">
 | 
			
		||||
        2019-11-04
 | 
			
		||||
        2019-11-20
 | 
			
		||||
      </span>
 | 
			
		||||
      <span class="post-author">::
 | 
			
		||||
        Abdulkadir</span>
 | 
			
		||||
      
 | 
			
		||||
    </div>
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
 
 | 
			
		||||
@@ -7,7 +7,7 @@
 | 
			
		||||
    <generator>Hugo -- gohugo.io</generator>
 | 
			
		||||
    <language>en-us</language>
 | 
			
		||||
    <copyright>© Abdulkadir Furkan Şanlı 2019</copyright>
 | 
			
		||||
    <lastBuildDate>Mon, 04 Nov 2019 00:00:00 +0000</lastBuildDate>
 | 
			
		||||
    <lastBuildDate>Wed, 20 Nov 2019 00:00:00 +0000</lastBuildDate>
 | 
			
		||||
    
 | 
			
		||||
	<atom:link href="https://abdulocra.cy/posts/index.xml" rel="self" type="application/rss+xml" />
 | 
			
		||||
    
 | 
			
		||||
@@ -15,7 +15,7 @@
 | 
			
		||||
    <item>
 | 
			
		||||
      <title>Introduction to Discrete Mathematics</title>
 | 
			
		||||
      <link>https://abdulocra.cy/posts/eidma/</link>
 | 
			
		||||
      <pubDate>Mon, 04 Nov 2019 00:00:00 +0000</pubDate>
 | 
			
		||||
      <pubDate>Wed, 20 Nov 2019 00:00:00 +0000</pubDate>
 | 
			
		||||
      
 | 
			
		||||
      <guid>https://abdulocra.cy/posts/eidma/</guid>
 | 
			
		||||
      <description>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user