+++ title = "Introduction to Discrete Mathematics" date = "2019-11-04" author = "Abdulkadir" showFullContent = false tags = ["university-notes"] markup = "mmark" +++ - Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. ## Propositional calculus - Comes from the linguistic concept that things can be either true or false. - We should avoid variables when forming statements, as they may change the logical value. - $$2=7$$ statement - $$x=5$$ not a statement - In logic we do not use the equals sign, we use the equivalence sign $$\equiv$$. - Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.). - When doing logic, we use propositional variables (e.g. p, q, r). - Can be either **true** or **false**. - The operations done on propositional variables are called propositional connectives. - Conjunction: $$p \land q$$ is only true if both p and q are true $$(0001)$$ - Disjunction: $$p \lor q$$ is only false if both p and q are false $$(0111)$$ - Implication (material conditional): $$p \implies q$$ is false only if p is true and q is false (truth table $$(1011)$$) - $$\equiv \neg p \lor q$$ - Not necessarily connectives but unary operations: - Negation: Denoted by ~, $$\neg$$ or NOT, negates the one input $$(10)$$. - A (propositional) formula is a "properly constructed" logical expression. - e.g. $$\neg[(p \lor q)] \land r$$ - $$(p \land)$$ is not a formula, as $$\land$$ requires 2 variables. - Logical equivalence: $$\phi(p, q, k) \equiv \psi(p, q, k)$$, logical value of $$\phi$$ is equal to logical value of $$\psi$$. - Commutativity: $$p \land q \equiv q \land p$$ - Associativity: $$(p \land q) \land r \equiv p \land (q \land r)$$ - Distributivity: $$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$ - Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions. - $$\neg(B \lor C)$$ can be written as $$\neg B \land \neg C$$ - Double negation law: $$\neg(\neg p) \equiv p$$ - De Morgan's laws: $$\neg(p \land q) \equiv \neg p \lor \neg q$$ and $$\neg(p \lor q) \equiv \neg p \land \neg q$$. - If and only if (*iff*): $$p \iff p \equiv (p \implies q) \land (q \implies p)$$ - Contraposition law: - $$(p \implies q) \equiv (\neg q \implies \neg p)$$ prove by contraposition - $$(p \implies q) \equiv (\neg p \lor q)$$ - $$(\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)$$ - Contradiction law: - $$p \lor \neg p \equiv 1$$ and $$p \land \neg p \equiv 0$$ - Tautology: $$\phi (p, q, ... r)$$ is a tautology *iff* $$\phi \equiv 1$$ ## Sets - We will consider subsets of universal set $$\mathbb X$$ - $$2^\mathbb X = \{ A : A \subseteq \mathbb X\}$$ - $$2^\mathbb X = P(\mathbb X)$$ - All 2 object subsets of $$\mathbb X$$: $$P_2(\mathbb X)$$ - $$A \subset B \equiv$$ every element of A is an element of B $$\equiv \{x \in \mathbb X : x \in A \implies x \in B\}$$ - Operations on sets: - Union - $$\cup$$ - $$A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}$$ - Intersection - $$\cap$$ - $$A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}$$ - Complement - $$A'$$ - $$A' = \{ x \in \mathbb X : \neg (x \in A) \}$$ - If $$x = \{ 1 \}$$ then $$x' = \emptyset$$ - Equality of sets: $$A = B$$ iff $$x \in \mathbb X : (x \in A \iff x \in B)$$ - Difference of sets: - $$A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'$$ - Symmetric difference: $$A \div B = (A \setminus B) \cup (B \setminus A)$$ - Laws of set algebra: - $$A \cup B = B \cup A , A \cap B = B \cap A$$ - $$(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$$ - $$(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$ vice versa - $$A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X$$ - $$(A \cup B)' = A' \cap B'$$ vice versa - $$A \cup A' = \mathbb X, A \cap A' = \emptyset$$ - Note: $$\{ \emptyset \} \neq \emptyset$$, one is a set with one element, one is the empty set, no elements ($$\{ \}$$) - Quip: $$\{ x \in \mathbb R : x^2 = -1\} = \emptyset$$ ## Quantifiers - $$\phi$$ - prepositional function: yields only true or false value - $$\forall$$ means "for all" and $$\exists$$ means "there exists" - $$\forall$$: - Shorthand for $$\land$$ e.g. $$(\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0$$ - $$\exists$$: - Shorthand for $$\lor$$ e.g. $$(\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5$$ - $$\neg \forall \equiv \exists$$, vice versa - With quantifiers we can write logical statements e.g. - $$(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y$$ is a statement and is false - $$(\forall x) (\exists y) x > y$$ is true - shortcut: $$(\exists x, y) \equiv (\exists x) (\exists y)$$ - Quantifiers can be expressed in set language, sort of a definition in terms of sets: - $$(\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}$$ - $$(\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset$$ - $$(\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )$$ - Order of quantifiers matters. ## Relations - Cartesian product: - $$A \times B = \{ (p, q) : p \in A \land q \in B \}$$ - Def: A relation $$R$$ on a set $$\mathbb X$$ is a subset of $$\mathbb X \times \mathbb X$$ ($$R \subseteq \mathbb X \times \mathbb X$$) - Graph of a function $$f()$$: $$\{ (x, f(x) : x \in Dom(f) \}$$ - Properties of: - Reflexivity: $$(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x$$ - Symmetricity: $$[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$$ - Transitivity: $$(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$$ - Antisymmetricity: $$(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$$ - Equivalence relations: - Def: $$R \subseteq \mathbb X \times \mathbb X$$ is said to be an equivalence relation *iff* $$R$$ is reflexive, symmetric and transitive. - Congruence modulo n: $$p R q \equiv n | p - q$$ - Def R - and equivalence relation of $$\mathbb X$$: The _equivalence class_ of an element $$x \in \mathbb X$$ is the set $$[x]_R = \{ y \in \mathbb X : x R y \}$$ - Every $$x \in \mathbb X$$ belongs to the equivalence class of some element $$a$$. - $$(\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])$$ - Partitions - A partition is a set containing subsets of some set $$\mathbb X$$ such that their collective symmetric difference equals $$\mathbb X$$. A partition of is a set $$\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}$$ such that: - $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)$$ - $$(\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)$$ - $$\{ A_i \}_{i \in \mathbb I}$$ is a partition *iff* there exists an equivalence relation $$R$$ on $$\mathbb X$$ such that: - $$(\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R$$ - $$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$$ - The quotient set: $$\mathbb X / R = \{ [a] : a \in \mathbb X \}$$ ## Posets - Partial orders - $$\mathbb X$$ is a set, $$R \subseteq \mathbb X \times \mathbb X$$ - Def: $$R$$ is a partial order on $$\mathbb X$$ iff $$R$$ is: - Reflexive - Antisymmetric - Transitive - Def: $$m \in \mathbb X$$ is said to be: - maximal element in $$(\mathbb X, \preccurlyeq)$$ iff $$(\forall a \in \mathbb X) m \preccurlyeq a \implies m = a$$ - largest iff $$(\forall a \in \mathbb X) (a \preccurlyeq m)$$ - minimal iff $$(\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)$$ - smallest iff $$(\forall a \in \mathbb X) (m \preccurlyeq a)$$ - Def: A partial order $$R$$ on $$\mathbb X$$ is said to be *"total"* iff $$(\forall x, y \in \mathbb X) (x R y \lor y R x)$$ - Def: A subset $$B$$ of $$\mathbb X$$ is called a chain *"chain"* iff $$B$$ is totally ordered by $$R$$ - $$C(\mathbb X)$$ - the set of all chains in $$(\mathbb X, R)$$ - A chain $$D$$ in $$(\mathbb X, R)$$ is called a maximal chain iff $$D$$ is a maximal element in $$(C(\mathbb X), R)$$ - $$K \subseteq \mathbb X$$ is called an antichain in $$(\mathbb X, R)$$ iff $$(\forall p, q \in K) (p R q \lor q R p \implies p = q)$$ - Def: $$R$$ is a partial order on $$\mathbb X$$, $$R$$ is called a *well* order iff $$R$$ is a total order on $$X$$ and every nonempty subset $$A$$ of $$\mathbb X$$ has the smallest element ## Induction - If $$\phi$$ is a propositional function defined on $$\mathbb N$$, if: - $$\phi(1)$$ - $$(\forall n \geq 1) (\phi(n) \implies \phi(n+1)$$ - $$(\forall k \geq 1) \phi(k)$$