Introduction to Discrete Mathematics
- Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.
 
Propositional calculus
- Comes from the linguistic concept that things can be either true or false.
 - We should avoid variables when forming statements, as they may change the logical value.
- \(2=7\) statement
 - \(x=5\) not a statement
 
 - In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
 - Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).
 - When doing logic, we use propositional variables (e.g. p, q, r).
- Can be either true or false.
 
 - The operations done on propositional variables are called propositional connectives.
- Conjunction: \(p \land q\) is only true if both p and q are true \((0001)\)
 - Disjunction: \(p \lor q\) is only false if both p and q are false \((0111)\)
 - Implication (material conditional): \(p \implies q\) is false only if p is true and q is false (truth table \((1011)\))
- \(\equiv \neg p \lor q\)
 
 
 - Not necessarily connectives but unary operations:
- Negation: Denoted by ~, \(\neg\) or NOT, negates the one input \((10)\).
 
 - A (propositional) formula is a “properly constructed” logical expression.
- e.g. \(\neg[(p \lor q)] \land r\)
 - \((p \land)\) is not a formula, as \(\land\) requires 2 variables.
 - Logical equivalence: \(\phi(p, q, k) \equiv \psi(p, q, k)\), logical value of \(\phi\) is equal to logical value of \(\psi\).
 - Commutativity: \(p \land q \equiv q \land p\)
 - Associativity: \((p \land q) \land r \equiv p \land (q \land r)\)
 - Distributivity: \(p \land (q \lor r) \equiv (p \land q) \lor (p \land r)\)
 - Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
- \(\neg(B \lor C)\) can be written as \(\neg B \land \neg C\)
 
 
 - Double negation law: \(\neg(\neg p) \equiv p\)
 De Morgan’s laws: \(\neg(p \land q) \equiv \neg p \lor \neg q\) and \(\neg(p \lor q) \equiv \neg p \land \neg q\).
- If and only if (iff): \(p \iff p \equiv (p \implies q) \land (q \implies p)\)
 - Contraposition law:
- \((p \implies q) \equiv (\neg q \implies \neg p)\) prove by contraposition
- \((p \implies q) \equiv (\neg p \lor q)\)
 - \((\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)\)
 
 
 - \((p \implies q) \equiv (\neg q \implies \neg p)\) prove by contraposition
 - Contradiction law:
- \(p \lor \neg p \equiv 1\) and \(p \land \neg p \equiv 0\)
 
 Tautology: \(\phi (p, q, ... r)\) is a tautology iff \(\phi \equiv 1\)
Sets
- We will consider subsets of universal set \(\mathbb X\)
- \(2^\mathbb X = \{ A : A \subseteq \mathbb X\}\)
 - \(2^\mathbb X = P(\mathbb X)\)
 - All 2 object subsets of \(\mathbb X\): \(P_2(\mathbb X)\)
 
 - \(A \subset B \equiv\) every element of A is an element of B \(\equiv \{x \in \mathbb X : x \in A \implies x \in B\}\)
 - Operations on sets:
- Union - \(\cup\) - \(A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}\)
 - Intersection - \(\cap\) - \(A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}\)
 - Complement - \(A'\) - \(A' = \{ x \in \mathbb X : \neg (x \in A) \}\)
- If \(x = \{ 1 \}\) then \(x' = \emptyset\)
 
 
 - Equality of sets: \(A = B\) iff \(x \in \mathbb X : (x \in A \iff x \in B)\)
 - Difference of sets:
- \(A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'\)
 - Symmetric difference: \(A \div B = (A \setminus B) \cup (B \setminus A)\)
 
 - Laws of set algebra:
- \(A \cup B = B \cup A , A \cap B = B \cap A\)
 - \((A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)\)
 - \((A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\) vice versa
 - \(A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X\)
 - \((A \cup B)' = A' \cap B'\) vice versa
 - \(A \cup A' = \mathbb X, A \cap A' = \emptyset\)
 
 - Note: \(\{ \emptyset \} \neq \emptyset\), one is a set with one element, one is the empty set, no elements (\(\{ \}\))
 - Quip: \(\{ x \in \mathbb R : x^2 = -1\} = \emptyset\)
 
Quantifiers
- \(\phi\) - prepositional function: yields only true or false value
 - \(\forall\) means “for all” and \(\exists\) means “there exists”
 - \(\forall\):
- Shorthand for \(\land\) e.g. \((\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0\)
 
 - \(\exists\):
- Shorthand for \(\lor\) e.g. \((\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5\)
 
 - \(\neg \forall \equiv \exists\), vice versa
 - With quantifiers we can write logical statements e.g.
- \((\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y\) is a statement and is false
 - \((\forall x) (\exists y) x > y\) is true
 - shortcut: \((\exists x, y) \equiv (\exists x) (\exists y)\)
 
 - Quantifiers can be expressed in set language, sort of a definition in terms of sets:
- \((\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}\)
 - \((\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset\)
 - \((\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )\)
 
 - Order of quantifiers matters.
 
Relations
- Cartesian product:
- \(A \times B = \{ (p, q) : p \in A \land q \in B \}\)
 
 - Def: A relation \(R\) on a set \(\mathbb X\) is a subset of \(\mathbb X \times \mathbb X\) (\(R \subseteq \mathbb X \times \mathbb X\))
 - Graph of a function \(f()\): \(\{ (x, f(x) : x \in Dom(f) \}\)
 - Properties of:
- Reflexivity: \((\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x\)
 - Symmetricity: \([ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]\)
 - Transitivity: \((\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)\)
 - Antisymmetricity: \((\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)\)
 
 - Equivalence relations:
- Def: \(R \subseteq \mathbb X \times \mathbb X\) is said to be an equivalence relation iff \(R\) is reflexive, symmetric and transitive.
 - Congruence modulo n: \(p R q \equiv n | p - q\)
 - Def R - and equivalence relation of \(\mathbb X\): The equivalence class of an element \(x \in \mathbb X\) is the set \([x]_R = \{ y \in \mathbb X : x R y \}\)
- Every \(x \in \mathbb X\) belongs to the equivalence class of some element \(a\).
 - \((\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])\)
 
 
 - Partitions
- A partition is a set containing subsets of some set \(\mathbb X\) such that their collective symmetric difference equals \(\mathbb X\). A partition of is a set \(\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}\) such that:
- \((\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)\)
 - \((\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)\)
 
 - \(\{ A_i \}_{i \in \mathbb I}\) is a partition iff there exists an equivalence relation \(R\) on \(\mathbb X\) such that:
- \((\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R\)
 - \((\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j\)
 
 - The quotient set: \(\mathbb X / R = \{ [a] : a \in \mathbb X \}\)
 
 - A partition is a set containing subsets of some set \(\mathbb X\) such that their collective symmetric difference equals \(\mathbb X\). A partition of is a set \(\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}\) such that:
 
Posets
- Partial orders
- \(\mathbb X\) is a set, \(R \subseteq \mathbb X \times \mathbb X\)
 - Def: \(R\) is a partial order on \(\mathbb X\) iff \(R\) is:
- Reflexive
 - Antisymmetric
 - Transitive
 
 - Def: \(m \in \mathbb X\) is said to be:
- maximal element in \((\mathbb X, \preccurlyeq)\) iff \((\forall a \in \mathbb X) m \preccurlyeq a \implies m = a\)
 - largest iff \((\forall a \in \mathbb X) (a \preccurlyeq m)\)
 - minimal iff \((\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)\)
 - smallest iff \((\forall a \in \mathbb X) (m \preccurlyeq a)\)
 
 - Def: A partial order \(R\) on \(\mathbb X\) is said to be “total” iff \((\forall x, y \in \mathbb X) (x R y \lor y R x)\)
 - Def: A subset \(B\) of \(\mathbb X\) is called a chain “chain” iff \(B\) is totally ordered by \(R\)
- \(C(\mathbb X)\) - the set of all chains in \((\mathbb X, R)\)
 - A chain \(D\) in \((\mathbb X, R)\) is called a maximal chain iff \(D\) is a maximal element in \((C(\mathbb X), R)\)
 - \(K \subseteq \mathbb X\) is called an antichain in \((\mathbb X, R)\) iff \((\forall p, q \in K) (p R q \lor q R p \implies p = q)\)
 - Def: \(R\) is a partial order on \(\mathbb X\), \(R\) is called a well order iff \(R\) is a total order on \(X\) and every nonempty subset \(A\) of \(\mathbb X\) has the smallest element
 
 
 
Induction
- If \(\phi\) is a propositional function defined on \(\mathbb N\), if:
- \(\phi(1)\)
 - \((\forall n \geq 1) \phi(n) \implies \phi(n+1)\)
 - \((\forall k \geq 1) \phi(k)\)
 
 
Functions
- \(f: \mathbb X \to \mathbb Y\)
 - Def: \(f \subseteq \mathbb X \times \mathbb Y\) is said to be a function if:
- \((\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))\)
 - \((\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)\)
 
 - Types of functions \(f: \mathbb X \to \mathbb Y\):
- \(f\) is said to be an injection ( 1 to 1 function) iff \((\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)\)
 - \(f\) is said to be a surjection (onto function) iff \((\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y\)
 - If \(f^{-1}\) is a function from \(\mathbb Y \to \mathbb X\) then \(f^{-1}\) is called the inverse function for \(f\)
- Fact: \(f^{-1}\) is a function iff \(f\) is a bijection (1 to 1 and onto)
 
 
 - For some set \(\mathbb A\) the image of \(\mathbb A\) by \(f\) is \(f(\mathbb A) = \{ f(x) : x \in \mathbb A \}\). We can also define the inverse of an image even when the function itself isn’t invertible: \(f^{-1}(\mathbb A)\)