<!DOCTYPE html>
<html lang="en">
<head>
  
    <title>Introduction to Discrete Mathematics :: abdulocracy&#39;s personal site</title>
  
  <meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
<meta name="description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 \(2=7\) statement \(x=5\) not a statement  In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc."/>
<meta name="keywords" content=""/>
<meta name="robots" content="noodp"/>
<link rel="canonical" href="https://022385.xyz/posts/eidma/" />


<link rel="stylesheet" href="https://022385.xyz/assets/style.css">

  <link rel="stylesheet" href="https://022385.xyz/assets/pink.css">






<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://022385.xyz/img/apple-touch-icon-144-precomposed.png">

<link rel="shortcut icon" href="https://022385.xyz/favicon.png">



<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Introduction to Discrete Mathematics :: abdulocracy&#39;s personal site — " />
<meta name="twitter:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 \(2=7\) statement \(x=5\) not a statement  In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
<meta name="twitter:site" content="https://022385.xyz/" />
<meta name="twitter:creator" content="Abdulkadir" />
<meta name="twitter:image" content="">


<meta property="og:locale" content="en" />
<meta property="og:type" content="article" />
<meta property="og:title" content="Introduction to Discrete Mathematics :: abdulocracy&#39;s personal site — ">
<meta property="og:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 \(2=7\) statement \(x=5\) not a statement  In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
<meta property="og:url" content="https://022385.xyz/posts/eidma/" />
<meta property="og:site_name" content="Introduction to Discrete Mathematics" />
<meta property="og:image" content="">
<meta property="og:image:width" content="2048">
<meta property="og:image:height" content="1024">

<meta property="article:published_time" content="2019-11-04 00:00:00 &#43;0000 UTC" />











</head>
<body class="">


<div class="container center">

  <header class="header">
  <div class="header__inner">
    <div class="header__logo">
      <a href="/">
  <div class="logo">
    abdulocracy
  </div>
</a>

    </div>
    <div class="menu-trigger">menu</div>
  </div>
  
    <nav class="menu">
  <ul class="menu__inner menu__inner--desktop">
    
      
      
        <ul class="menu__sub-inner">
          <li class="menu__sub-inner-more-trigger">≡ ▾</li>

          <ul class="menu__sub-inner-more hidden">
            
              
                <li><a href="/about">about</a></li>
              
            
              
                <li><a href="/tags/university-notes">university notes</a></li>
              
            
          </ul>
        </ul>
      
    

    
  </ul>

  <ul class="menu__inner menu__inner--mobile">
    
      
        <li><a href="/about">about</a></li>
      
    
      
        <li><a href="/tags/university-notes">university notes</a></li>
      
    
    
  </ul>
</nav>

  
</header>


  <div class="content">
    
<div class="post">
  <h1 class="post-title">
    <a href="https://022385.xyz/posts/eidma/">Introduction to Discrete Mathematics</a></h1>
  <div class="post-meta">
      
    <span class="post-date">
      2019-11-04
    </span>
    
    
    <span class="post-author">::
      Abdulkadir
    </span>
    
  </div>

  
  <span class="post-tags">
    
    #<a href="https://022385.xyz/tags/university-notes/">university-notes</a>&nbsp;
    
  </span>
  

  

  <div class="post-content">
    <ul>
<li>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.</li>
</ul>

<h2 id="propositional-calculus">Propositional calculus</h2>

<ul>
<li>Comes from the linguistic concept that things can be either true or false.</li>

<li><p>We should avoid variables when forming statements, as they may change the logical value.</p>

<ul>
<li><span  class="math">\(2=7\)</span> statement</li>
<li><span  class="math">\(x=5\)</span> not a statement</li>
</ul></li>

<li><p>In logic we do not use the equals sign, we use the equivalence sign <span  class="math">\(\equiv\)</span>.</p></li>

<li><p>Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).</p></li>

<li><p>When doing logic, we use propositional variables (e.g. p, q, r).</p>

<ul>
<li>Can be either <strong>true</strong> or <strong>false</strong>.</li>
</ul></li>

<li><p>The operations done on propositional variables are called propositional connectives.</p>

<ul>
<li>Conjunction: <span  class="math">\(p \land q\)</span> is only true if both p and q are true <span  class="math">\((0001)\)</span></li>
<li>Disjunction: <span  class="math">\(p \lor q\)</span> is only false if both p and q are false <span  class="math">\((0111)\)</span></li>
<li>Implication (material conditional): <span  class="math">\(p \implies q\)</span> is false only if p is true and q is false (truth table <span  class="math">\((1011)\)</span>)

<ul>
<li><span  class="math">\(\equiv \neg p \lor q\)</span></li>
</ul></li>
</ul></li>

<li><p>Not necessarily connectives but unary operations:</p>

<ul>
<li>Negation: Denoted by ~, <span  class="math">\(\neg\)</span> or NOT, negates the one input <span  class="math">\((10)\)</span>.</li>
</ul></li>

<li><p>A (propositional) formula is a &quot;properly constructed&quot; logical expression.</p>

<ul>
<li>e.g. <span  class="math">\(\neg[(p \lor q)] \land r\)</span></li>
<li><span  class="math">\((p \land)\)</span> is not a formula, as <span  class="math">\(\land\)</span> requires 2 variables.</li>
<li>Logical equivalence: <span  class="math">\(\phi(p, q, k) \equiv \psi(p, q, k)\)</span>, logical value of <span  class="math">\(\phi\)</span> is equal to logical value of <span  class="math">\(\psi\)</span>.</li>
<li>Commutativity: <span  class="math">\(p \land q \equiv q \land p\)</span></li>
<li>Associativity: <span  class="math">\((p \land q) \land r \equiv p \land (q \land r)\)</span></li>
<li>Distributivity: <span  class="math">\(p \land (q \lor r) \equiv (p \land q) \lor (p \land r)\)</span></li>
<li>Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.

<ul>
<li><span  class="math">\(\neg(B \lor C)\)</span> can be written as <span  class="math">\(\neg B \land \neg C\)</span></li>
</ul></li>
</ul></li>

<li><p>Double negation law: <span  class="math">\(\neg(\neg p) \equiv p\)</span></p></li>

<li><p>De Morgan's laws: <span  class="math">\(\neg(p \land q) \equiv \neg p \lor \neg q\)</span> and <span  class="math">\(\neg(p \lor q) \equiv \neg p \land \neg q\)</span>.</p></li>

<li><p>If and only if (<em>iff</em>): <span  class="math">\(p \iff p \equiv (p \implies q) \land (q \implies p)\)</span></p></li>

<li><p>Contraposition law:</p>

<ul>
<li><span  class="math">\((p \implies q) \equiv (\neg q \implies \neg p)\)</span> prove by contraposition

<ul>
<li><span  class="math">\((p \implies q) \equiv (\neg p \lor q)\)</span></li>
<li><span  class="math">\((\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)\)</span></li>
</ul></li>
</ul></li>

<li><p>Contradiction law:</p>

<ul>
<li><span  class="math">\(p \lor \neg p \equiv 1\)</span> and <span  class="math">\(p \land \neg p \equiv 0\)</span></li>
</ul></li>

<li><p>Tautology: <span  class="math">\(\phi (p, q, ... r)\)</span> is a tautology <em>iff</em> <span  class="math">\(\phi \equiv 1\)</span></p></li>
</ul>

<h2 id="sets">Sets</h2>

<ul>
<li><p>We will consider subsets of universal set <span  class="math">\(\mathbb X\)</span></p>

<ul>
<li><span  class="math">\(2^\mathbb X = \{ A : A \subseteq \mathbb X\}\)</span></li>
<li><span  class="math">\(2^\mathbb X = P(\mathbb X)\)</span></li>
<li>All 2 object subsets of <span  class="math">\(\mathbb X\)</span>:  <span  class="math">\(P_2(\mathbb X)\)</span></li>
</ul></li>

<li><p><span  class="math">\(A \subset B \equiv\)</span> every element of A is an element of B <span  class="math">\(\equiv \{x \in \mathbb X : x \in A \implies x \in B\}\)</span></p></li>

<li><p>Operations on sets:</p>

<ul>
<li>Union - <span  class="math">\(\cup\)</span> - <span  class="math">\(A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}\)</span></li>
<li>Intersection - <span  class="math">\(\cap\)</span> - <span  class="math">\(A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}\)</span></li>
<li>Complement - <span  class="math">\(A'\)</span> - <span  class="math">\(A' = \{ x \in \mathbb X : \neg (x \in A) \}\)</span>

<ul>
<li>If <span  class="math">\(x = \{ 1 \}\)</span> then <span  class="math">\(x' = \emptyset\)</span></li>
</ul></li>
</ul></li>

<li><p>Equality of sets: <span  class="math">\(A = B\)</span> iff <span  class="math">\(x \in \mathbb X : (x \in A \iff x \in B)\)</span></p></li>

<li><p>Difference of sets:</p>

<ul>
<li><span  class="math">\(A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'\)</span></li>
<li>Symmetric difference: <span  class="math">\(A \div B = (A \setminus B) \cup (B \setminus A)\)</span></li>
</ul></li>

<li><p>Laws of set algebra:</p>

<ul>
<li><span  class="math">\(A \cup B = B \cup A , A \cap B = B \cap A\)</span></li>
<li><span  class="math">\((A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)\)</span></li>
<li><span  class="math">\((A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)</span> vice versa</li>
<li><span  class="math">\(A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X\)</span></li>
<li><span  class="math">\((A \cup B)' = A' \cap B'\)</span> vice versa</li>
<li><span  class="math">\(A \cup A' = \mathbb X, A \cap A' = \emptyset\)</span></li>
</ul></li>

<li><p>Note: <span  class="math">\(\{ \emptyset \} \neq \emptyset\)</span>, one is a set with one element, one is the empty set, no elements (<span  class="math">\(\{ \}\)</span>)</p></li>

<li><p>Quip: <span  class="math">\(\{ x \in \mathbb R : x^2 = -1\} = \emptyset\)</span></p></li>
</ul>

<h2 id="quantifiers">Quantifiers</h2>

<ul>
<li><span  class="math">\(\phi\)</span> - prepositional function: yields only true or false value</li>
<li><span  class="math">\(\forall\)</span> means &quot;for all&quot; and <span  class="math">\(\exists\)</span> means &quot;there exists&quot;</li>

<li><p><span  class="math">\(\forall\)</span>:</p>

<ul>
<li>Shorthand for <span  class="math">\(\land\)</span> e.g. <span  class="math">\((\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0\)</span></li>
</ul></li>

<li><p><span  class="math">\(\exists\)</span>:</p>

<ul>
<li>Shorthand for <span  class="math">\(\lor\)</span> e.g. <span  class="math">\((\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5\)</span></li>
</ul></li>

<li><p><span  class="math">\(\neg \forall \equiv \exists\)</span>, vice versa</p></li>

<li><p>With quantifiers we can write logical statements e.g.</p>

<ul>
<li><span  class="math">\((\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y\)</span> is a statement and is false</li>
<li><span  class="math">\((\forall x) (\exists y) x > y\)</span> is true</li>
<li>shortcut: <span  class="math">\((\exists x, y) \equiv (\exists x) (\exists y)\)</span></li>
</ul></li>

<li><p>Quantifiers can be expressed in set language, sort of a definition in terms of sets:</p>

<ul>
<li><span  class="math">\((\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}\)</span></li>
<li><span  class="math">\((\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset\)</span></li>
<li><span  class="math">\((\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )\)</span></li>
</ul></li>

<li><p>Order of quantifiers matters.</p></li>
</ul>

<h2 id="relations">Relations</h2>

<ul>
<li><p>Cartesian product:</p>

<ul>
<li><span  class="math">\(A \times B = \{ (p, q) : p \in A \land q \in B \}\)</span></li>
</ul></li>

<li><p>Def: A relation <span  class="math">\(R\)</span> on a set <span  class="math">\(\mathbb X\)</span> is a subset of <span  class="math">\(\mathbb X \times \mathbb X\)</span> (<span  class="math">\(R \subseteq \mathbb X \times \mathbb X\)</span>)</p></li>

<li><p>Graph of a function <span  class="math">\(f()\)</span>: <span  class="math">\(\{ (x, f(x) : x \in Dom(f) \}\)</span></p></li>

<li><p>Properties of:</p>

<ul>
<li>Reflexivity: <span  class="math">\((\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x\)</span></li>
<li>Symmetricity: <span  class="math">\([ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]\)</span></li>
<li>Transitivity: <span  class="math">\((\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)\)</span></li>
<li>Antisymmetricity: <span  class="math">\((\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)\)</span></li>
</ul></li>

<li><p>Equivalence relations:</p>

<ul>
<li>Def: <span  class="math">\(R \subseteq \mathbb X \times \mathbb X\)</span> is said to be an equivalence relation <em>iff</em> <span  class="math">\(R\)</span> is reflexive, symmetric and transitive.</li>
<li>Congruence modulo n: <span  class="math">\(p R q \equiv n | p - q\)</span></li>
<li>Def R - and equivalence relation of <span  class="math">\(\mathbb X\)</span>: The <em>equivalence class</em> of an element <span  class="math">\(x \in \mathbb X\)</span> is the set <span  class="math">\([x]_R = \{ y \in \mathbb X : x R y \}\)</span>

<ul>
<li>Every <span  class="math">\(x \in \mathbb X\)</span> belongs to the equivalence class of some element <span  class="math">\(a\)</span>.</li>
<li><span  class="math">\((\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])\)</span></li>
</ul></li>
</ul></li>

<li><p>Partitions</p>

<ul>
<li><p>A partition is a set containing subsets of some set <span  class="math">\(\mathbb X\)</span> such that their collective symmetric difference equals <span  class="math">\(\mathbb X\)</span>. A partition of is a set <span  class="math">\(\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}\)</span> such that:</p>

<ul>
<li><span  class="math">\((\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)\)</span></li>
<li><span  class="math">\((\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)\)</span></li>
</ul></li>

<li><p><span  class="math">\(\{ A_i \}_{i \in \mathbb I}\)</span> is a partition <em>iff</em> there exists an equivalence relation <span  class="math">\(R\)</span> on <span  class="math">\(\mathbb X\)</span> such that:</p>

<ul>
<li><span  class="math">\((\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R\)</span></li>
<li><span  class="math">\((\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j\)</span></li>
</ul></li>

<li><p>The quotient set: <span  class="math">\(\mathbb X / R = \{ [a] : a \in \mathbb X \}\)</span></p></li>
</ul></li>
</ul>

  </div>
  

  

</div>

  </div>

  
    <footer class="footer">
  <div class="footer__inner">
    
    <div class="copyright copyright--user">
      <span>© Abdulkadir Furkan Şanlı 2019 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
          BY-ND</a></span>
      
        <span>:: theme by <a href="https://twitter.com/panr">panr</a></span>
      </div>
    </div>
</footer>

<script src="https://022385.xyz/assets/main.js"></script>
<script src="https://022385.xyz/assets/prism.js"></script>





<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css"
    integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js"
    integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz"
    crossorigin="anonymous"></script>
<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js"
    integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
    onload="renderMathInElement(document.body);"></script>


  
</div>

</body>
</html>