--- title: Introduction to Discrete Mathematics date: "2019-11-04" markup: pandoc --- - Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. ## Propositional calculus - Comes from the linguistic concept that things can be either true or false. - We should avoid variables when forming statements, as they may change the logical value. - $2=7$ statement - $x=5$ not a statement - In logic we do not use the equals sign, we use the equivalence sign $\equiv$. - Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.). - When doing logic, we use propositional variables (e.g. p, q, r). - Can be either **true** or **false**. - The operations done on propositional variables are called propositional connectives. - Conjunction: $p \land q$ is only true if both p and q are true $(0001)$ - Disjunction: $p \lor q$ is only false if both p and q are false $(0111)$ - Implication (material conditional): $p \implies q$ is false only if p is true and q is false (truth table $(1011)$) - $\equiv \neg p \lor q$ - Not necessarily connectives but unary operations: - Negation: Denoted by ~, $\neg$ or NOT, negates the one input $(10)$. - A (propositional) formula is a "properly constructed" logical expression. - e.g. $\neg[(p \lor q)] \land r$ - $(p \land)$ is not a formula, as $\land$ requires 2 variables. - Logical equivalence: $\phi(p, q, k) \equiv \psi(p, q, k)$, logical value of $\phi$ is equal to logical value of $\psi$. - Commutativity: $p \land q \equiv q \land p$ - Associativity: $(p \land q) \land r \equiv p \land (q \land r)$ - Distributivity: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ - Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions. - $\neg(B \lor C)$ can be written as $\neg B \land \neg C$ - Double negation law: $\neg(\neg p) \equiv p$ - De Morgan's laws: $\neg(p \land q) \equiv \neg p \lor \neg q$ and $\neg(p \lor q) \equiv \neg p \land \neg q$. - If and only if (*iff*): $p \iff p \equiv (p \implies q) \land (q \implies p)$ - Contraposition law: - $(p \implies q) \equiv (\neg q \implies \neg p)$ prove by contraposition - $(p \implies q) \equiv (\neg p \lor q)$ - $(\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)$ - Contradiction law: - $p \lor \neg p \equiv 1$ and $p \land \neg p \equiv 0$ - Tautology: $\phi (p, q, ... r)$ is a tautology *iff* $\phi \equiv 1$ ## Sets - We will consider subsets of universal set $\mathbb X$ - $2^\mathbb X = \{ A : A \subseteq \mathbb X\}$ - $2^\mathbb X = P(\mathbb X)$ - All 2 object subsets of $\mathbb X$: $P_2(\mathbb X)$ - $A \subset B \equiv$ every element of A is an element of B $\equiv \{x \in \mathbb X : x \in A \implies x \in B\}$ - Operations on sets: - Union - $\cup$ - $A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}$ - Intersection - $\cap$ - $A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}$ - Complement - $A'$ - $A' = \{ x \in \mathbb X : \neg (x \in A) \}$ - If $x = \{ 1 \}$ then $x' = \emptyset$ - Equality of sets: $A = B$ iff $x \in \mathbb X : (x \in A \iff x \in B)$ - Difference of sets: - $A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'$ - Symmetric difference: $A \div B = (A \setminus B) \cup (B \setminus A)$ - Laws of set algebra: - $A \cup B = B \cup A , A \cap B = B \cap A$ - $(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$ - $(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ vice versa - $A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X$ - $(A \cup B)' = A' \cap B'$ vice versa - $A \cup A' = \mathbb X, A \cap A' = \emptyset$ - Note: $\{ \emptyset \} \neq \emptyset$, one is a set with one element, one is the empty set, no elements ($\{ \}$) - Quip: $\{ x \in \mathbb R : x^2 = -1\} = \emptyset$ ## Quantifiers - $\phi$ - prepositional function: yields only true or false value - $\forall$ means "for all" and $\exists$ means "there exists" - $\forall$: - Shorthand for $\land$ e.g. $(\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0$ - $\exists$: - Shorthand for $\lor$ e.g. $(\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5$ - $\neg \forall \equiv \exists$, vice versa - With quantifiers we can write logical statements e.g. - $(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y$ is a statement and is false - $(\forall x) (\exists y) x > y$ is true - shortcut: $(\exists x, y) \equiv (\exists x) (\exists y)$ - Quantifiers can be expressed in set language, sort of a definition in terms of sets: - $(\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}$ - $(\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset$ - $(\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )$ - Order of quantifiers matters. ## Relations - Cartesian product: - $A \times B = \{ (p, q) : p \in A \land q \in B \}$ - Def: A relation $R$ on a set $\mathbb X$ is a subset of $\mathbb X \times \mathbb X$ ($R \subseteq \mathbb X \times \mathbb X$) - Graph of a function $f()$: $\{ (x, f(x) : x \in Dom(f) \}$ - Properties of: - Reflexivity: $(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x$ - Symmetricity: $[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$ - Transitivity: $(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$ - Antisymmetricity: $(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$ - Equivalence relations: - Def: $R \subseteq \mathbb X \times \mathbb X$ is said to be an equivalence relation *iff* $R$ is reflexive, symmetric and transitive. - Congruence modulo n: $p R q \equiv n | p - q$ - Def R - and equivalence relation of $\mathbb X$: The _equivalence class_ of an element $x \in \mathbb X$ is the set $[x]_R = \{ y \in \mathbb X : x R y \}$ - Every $x \in \mathbb X$ belongs to the equivalence class of some element $a$. - $(\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])$ - Partitions - A partition is a set containing subsets of some set $\mathbb X$ such that their collective symmetric difference equals $\mathbb X$. A partition of is a set $\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}$ such that: - $(\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)$ - $(\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)$ - $\{ A_i \}_{i \in \mathbb I}$ is a partition *iff* there exists an equivalence relation $R$ on $\mathbb X$ such that: - $(\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R$ - $(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$ - The quotient set: $\mathbb X / R = \{ [a] : a \in \mathbb X \}$ ## Posets - Partial orders - $\mathbb X$ is a set, $R \subseteq \mathbb X \times \mathbb X$ - Def: $R$ is a partial order on $\mathbb X$ iff $R$ is: - Reflexive - Antisymmetric - Transitive - Def: $m \in \mathbb X$ is said to be: - maximal element in $(\mathbb X, \preccurlyeq)$ iff $(\forall a \in \mathbb X) m \preccurlyeq a \implies m = a$ - largest iff $(\forall a \in \mathbb X) (a \preccurlyeq m)$ - minimal iff $(\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)$ - smallest iff $(\forall a \in \mathbb X) (m \preccurlyeq a)$ - Def: A partial order $R$ on $\mathbb X$ is said to be *"total"* iff $(\forall x, y \in \mathbb X) (x R y \lor y R x)$ - Def: A subset $B$ of $\mathbb X$ is called a chain *"chain"* iff $B$ is totally ordered by $R$ - $C(\mathbb X)$ - the set of all chains in $(\mathbb X, R)$ - A chain $D$ in $(\mathbb X, R)$ is called a maximal chain iff $D$ is a maximal element in $(C(\mathbb X), R)$ - $K \subseteq \mathbb X$ is called an antichain in $(\mathbb X, R)$ iff $(\forall p, q \in K) (p R q \lor q R p \implies p = q)$ - Def: $R$ is a partial order on $\mathbb X$, $R$ is called a *well* order iff $R$ is a total order on $X$ and every nonempty subset $A$ of $\mathbb X$ has the smallest element ## Induction - If $\phi$ is a propositional function defined on $\mathbb N$, if: - $\phi(1)$ - $(\forall n \geq 1) \phi(n) \implies \phi(n+1)$ - $(\forall k \geq 1) \phi(k)$ ## Functions - $f: \mathbb X \to \mathbb Y$ - Def: $f \subseteq \mathbb X \times \mathbb Y$ is said to be a function if: - $(\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))$ - $(\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)$ - Types of functions $f: \mathbb X \to \mathbb Y$: - $f$ is said to be an injection ( 1 to 1 function) iff $(\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ - $f$ is said to be a surjection (onto function) iff $(\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y$ - If $f^{-1}$ is a function from $\mathbb Y \to \mathbb X$ then $f^{-1}$ is called the inverse function for $f$ - Fact: $f^{-1}$ is a function iff $f$ is a *bijection* (1 to 1 and onto) - For some set $\mathbb A$ the image of $\mathbb A$ by $f$ is $f(\mathbb A) = \{ f(x) : x \in \mathbb A \}$. We can also define the inverse of an image even when the function itself isn't invertible: $f^{-1}(\mathbb A)$ ## Combinatorics - $|\mathbb A|$ size (number of elements) of $\mathbb A$ - Rule of addition: - If $\mathbb A, \mathbb B \subseteq \mathbb X$ and $|\mathbb A|, |\mathbb B| \in \mathbb N$ and $\mathbb A \cap \mathbb B = \emptyset$ then $|\mathbb A \cup \mathbb B| = |\mathbb A| + |\mathbb B|$ - Can be generalized as: $$ (\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land \\ |\mathbb{A}_1|, |\mathbb{A}_2|, ..., |\mathbb{A}_n| \in \mathbb{N} \implies \\ (\forall i, j \in \{1, 2, ..., n \})(i \neq j \implies \mathbb{A}_i \cap \mathbb{A}_j = \emptyset) $$ - Rule of multiplication: - $\mathbb{A}, \mathbb{B} \subseteq \mathbb{X}, |\mathbb{A} \times \mathbb{B}| = |\mathbb{A}| \cdot |\mathbb{B}|$ - Can be generalized as: $$ (\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land |\mathbb{A}_i| \in \mathbb{N} \implies \\ |\mathbb{A}_1 \times \mathbb{A}_2 \times ... \times \mathbb{A}_n| = |\mathbb{A}_1| \cdot |\mathbb{A}_2| \cdot ... \cdot |\mathbb{A_n}| $$