45 lines
2.2 KiB
XML
45 lines
2.2 KiB
XML
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
|
||
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom">
|
||
<channel>
|
||
<title>abdulocracy's personal site</title>
|
||
<link>https://abdulocra.cy/</link>
|
||
<description>Recent content on abdulocracy's personal site</description>
|
||
<generator>Hugo -- gohugo.io</generator>
|
||
<language>en-us</language>
|
||
<copyright>© Abdulkadir Furkan Şanlı 2020 :: CC BY-ND</copyright>
|
||
<lastBuildDate>Fri, 25 Dec 2020 00:00:00 +0000</lastBuildDate><atom:link href="https://abdulocra.cy/index.xml" rel="self" type="application/rss+xml" />
|
||
<item>
|
||
<title>0</title>
|
||
<link>https://abdulocra.cy/blog/0/</link>
|
||
<pubDate>Fri, 25 Dec 2020 00:00:00 +0000</pubDate>
|
||
|
||
<guid>https://abdulocra.cy/blog/0/</guid>
|
||
<description>You found my site. Congratulations.
|
||
If there&rsquo;s content on here, how wonderful. If not, then I haven&rsquo;t yet realized my vague plans for a blog.
|
||
Fare thee well.</description>
|
||
</item>
|
||
|
||
<item>
|
||
<title>about</title>
|
||
<link>https://abdulocra.cy/about/</link>
|
||
<pubDate>Mon, 04 Nov 2019 00:00:00 +0000</pubDate>
|
||
|
||
<guid>https://abdulocra.cy/about/</guid>
|
||
<description> name: Abdulkadir Furkan Şanlı handle: abdulocracy contact: email: me@abdulocra.cy gpg: 0xEE6ED1FE matrix: @me:abdulocra.cy irc (libera.chat): abdulocracy </description>
|
||
</item>
|
||
|
||
<item>
|
||
<title>Introduction to Discrete Mathematics</title>
|
||
<link>https://abdulocra.cy/university-notes/eidma/</link>
|
||
<pubDate>Mon, 04 Nov 2019 00:00:00 +0000</pubDate>
|
||
|
||
<guid>https://abdulocra.cy/university-notes/eidma/</guid>
|
||
<description>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false.
|
||
We should avoid variables when forming statements, as they may change the logical value.
|
||
\(2=7\) statement \(x=5\) not a statement In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
|
||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.</description>
|
||
</item>
|
||
|
||
</channel>
|
||
</rss>
|