d5e78f2838
Signed-off-by: Abdulkadir Furkan Şanlı <abdulkadirfsanli@protonmail.com>
511 lines
17 KiB
HTML
511 lines
17 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en">
|
||
<head>
|
||
|
||
<title>Introduction to Discrete Mathematics :: abdulocracy's personal site</title>
|
||
|
||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
|
||
<meta name="description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
|
||
$2=7$ statement $x=5$ not a statement In logic we do not use the equals sign, we use the equivalence sign $\equiv$.
|
||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc."/>
|
||
<meta name="keywords" content=""/>
|
||
<meta name="robots" content="noodp"/>
|
||
<link rel="canonical" href="https://abdulocra.cy/posts/eidma/" />
|
||
|
||
|
||
<link rel="stylesheet" href="https://abdulocra.cy/assets/style.css">
|
||
|
||
<link rel="stylesheet" href="https://abdulocra.cy/assets/pink.css">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://abdulocra.cy/img/apple-touch-icon-144-precomposed.png">
|
||
|
||
<link rel="shortcut icon" href="https://abdulocra.cy/img/favicon/favicon.png">
|
||
|
||
|
||
|
||
<meta name="twitter:card" content="summary" />
|
||
<meta name="twitter:title" content="Introduction to Discrete Mathematics :: abdulocracy's personal site — " />
|
||
<meta name="twitter:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
|
||
$2=7$ statement $x=5$ not a statement In logic we do not use the equals sign, we use the equivalence sign $\equiv$.
|
||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
|
||
<meta name="twitter:site" content="https://abdulocra.cy/" />
|
||
<meta name="twitter:creator" content="" />
|
||
<meta name="twitter:image" content="">
|
||
|
||
|
||
<meta property="og:locale" content="en" />
|
||
<meta property="og:type" content="article" />
|
||
<meta property="og:title" content="Introduction to Discrete Mathematics :: abdulocracy's personal site — ">
|
||
<meta property="og:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets. Propositional calculus Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
|
||
$2=7$ statement $x=5$ not a statement In logic we do not use the equals sign, we use the equivalence sign $\equiv$.
|
||
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
|
||
<meta property="og:url" content="https://abdulocra.cy/posts/eidma/" />
|
||
<meta property="og:site_name" content="Introduction to Discrete Mathematics" />
|
||
<meta property="og:image" content="">
|
||
<meta property="og:image:width" content="2048">
|
||
<meta property="og:image:height" content="1024">
|
||
|
||
<meta property="article:published_time" content="2019-11-20 00:00:00 +0000 UTC" />
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</head>
|
||
<body class="">
|
||
|
||
|
||
<div class="container center">
|
||
|
||
<header class="header">
|
||
<div class="header__inner">
|
||
<div class="header__logo">
|
||
<a href="/">
|
||
<div class="logo">
|
||
abdulocracy
|
||
</div>
|
||
</a>
|
||
|
||
</div>
|
||
<div class="menu-trigger">menu</div>
|
||
</div>
|
||
|
||
<nav class="menu">
|
||
<ul class="menu__inner menu__inner--desktop">
|
||
|
||
|
||
|
||
<ul class="menu__sub-inner">
|
||
<li class="menu__sub-inner-more-trigger">menu ▾</li>
|
||
|
||
<ul class="menu__sub-inner-more hidden">
|
||
|
||
|
||
<li><a href="/about">about</a></li>
|
||
|
||
|
||
|
||
<li><a href="/tags/university-notes">university notes</a></li>
|
||
|
||
|
||
</ul>
|
||
</ul>
|
||
|
||
|
||
|
||
|
||
</ul>
|
||
|
||
<ul class="menu__inner menu__inner--mobile">
|
||
|
||
|
||
<li><a href="/about">about</a></li>
|
||
|
||
|
||
|
||
<li><a href="/tags/university-notes">university notes</a></li>
|
||
|
||
|
||
|
||
</ul>
|
||
</nav>
|
||
|
||
|
||
</header>
|
||
|
||
|
||
<div class="content">
|
||
|
||
<div class="post">
|
||
<h1 class="post-title">
|
||
<a href="https://abdulocra.cy/posts/eidma/">Introduction to Discrete Mathematics</a></h1>
|
||
<div class="post-meta">
|
||
|
||
<span class="post-date">
|
||
2019-11-20
|
||
</span>
|
||
|
||
|
||
</div>
|
||
|
||
|
||
<span class="post-tags">
|
||
|
||
#<a href="https://abdulocra.cy/tags/university-notes/">university-notes</a>
|
||
|
||
</span>
|
||
|
||
|
||
|
||
|
||
<div class="post-content">
|
||
|
||
|
||
<ul>
|
||
<li>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.</li>
|
||
</ul>
|
||
|
||
<h2 id="propositional-calculus">Propositional calculus</h2>
|
||
|
||
<ul>
|
||
<li>Comes from the linguistic concept that things can be either true or false.</li>
|
||
|
||
<li><p>We should avoid variables when forming statements, as they may change the logical value.</p>
|
||
|
||
<ul>
|
||
<li>$2=7$ statement</li>
|
||
<li>$x=5$ not a statement</li>
|
||
</ul></li>
|
||
|
||
<li><p>In logic we do not use the equals sign, we use the equivalence sign $\equiv$.</p></li>
|
||
|
||
<li><p>Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).</p></li>
|
||
|
||
<li><p>When doing logic, we use propositional variables (e.g. p, q, r).</p>
|
||
|
||
<ul>
|
||
<li>Can be either <strong>true</strong> or <strong>false</strong>.</li>
|
||
</ul></li>
|
||
|
||
<li><p>The operations done on propositional variables are called propositional connectives.</p>
|
||
|
||
<ul>
|
||
<li>Conjunction: $p \land q$ is only true if both p and q are true $(0001)$</li>
|
||
<li>Disjunction: $p \lor q$ is only false if both p and q are false $(0111)$</li>
|
||
<li>Implication (material conditional): $p \implies q$ is false only if p is true and q is false (truth table $(1011)$)
|
||
|
||
<ul>
|
||
<li>$\equiv \neg p \lor q$</li>
|
||
</ul></li>
|
||
</ul></li>
|
||
|
||
<li><p>Not necessarily connectives but unary operations:</p>
|
||
|
||
<ul>
|
||
<li>Negation: Denoted by ~, $\neg$ or NOT, negates the one input $(10)$.</li>
|
||
</ul></li>
|
||
|
||
<li><p>A (propositional) formula is a “properly constructed” logical expression.</p>
|
||
|
||
<ul>
|
||
<li>e.g. $\neg[(p \lor q)] \land r$</li>
|
||
<li>$(p \land)$ is not a formula, as $\land$ requires 2 variables.</li>
|
||
<li>Logical equivalence: $\phi(p, q, k) \equiv \psi(p, q, k)$, logical value of $\phi$ is equal to logical value of $\psi$.</li>
|
||
<li>Commutativity: $p \land q \equiv q \land p$</li>
|
||
<li>Associativity: $(p \land q) \land r \equiv p \land (q \land r)$</li>
|
||
<li>Distributivity: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$</li>
|
||
<li>Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
|
||
|
||
<ul>
|
||
<li>$\neg(B \lor C)$ can be written as $\neg B \land \neg C$</li>
|
||
</ul></li>
|
||
</ul></li>
|
||
|
||
<li><p>Double negation law: $\neg(\neg p) \equiv p$</p></li>
|
||
|
||
<li><p>De Morgan’s laws: $\neg(p \land q) \equiv \neg p \lor \neg q$ and $\neg(p \lor q) \equiv \neg p \land \neg q$.</p></li>
|
||
|
||
<li><p>If and only if (<em>iff</em>): $p \iff p \equiv (p \implies q) \land (q \implies p)$</p></li>
|
||
|
||
<li><p>Contraposition law:</p>
|
||
|
||
<ul>
|
||
<li>$(p \implies q) \equiv (\neg q \implies \neg p)$ prove by contraposition
|
||
|
||
<ul>
|
||
<li>$(p \implies q) \equiv (\neg p \lor q)$</li>
|
||
<li>$(\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)$</li>
|
||
</ul></li>
|
||
</ul></li>
|
||
|
||
<li><p>Contradiction law:</p>
|
||
|
||
<ul>
|
||
<li>$p \lor \neg p \equiv 1$ and $p \land \neg p \equiv 0$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Tautology: $\phi (p, q, … r)$ is a tautology <em>iff</em> $\phi \equiv 1$</p></li>
|
||
</ul>
|
||
|
||
<h2 id="sets">Sets</h2>
|
||
|
||
<ul>
|
||
<li><p>We will consider subsets of universal set $\mathbb X$</p>
|
||
|
||
<ul>
|
||
<li>$2^\mathbb X = { A : A \subseteq \mathbb X}$</li>
|
||
<li>$2^\mathbb X = P(\mathbb X)$</li>
|
||
<li>All 2 object subsets of $\mathbb X$: $P_2(\mathbb X)$</li>
|
||
</ul></li>
|
||
|
||
<li><p>$A \subset B \equiv$ every element of A is an element of B $\equiv {x \in \mathbb X : x \in A \implies x \in B}$</p></li>
|
||
|
||
<li><p>Operations on sets:</p>
|
||
|
||
<ul>
|
||
<li>Union - $\cup$ - $A \cup B = { x \in \mathbb X : x \in A \lor x \in B }$</li>
|
||
<li>Intersection - $\cap$ - $A \cap B = { x \in \mathbb X : x \in A \land x \in B }$</li>
|
||
<li>Complement - $A’$ - $A’ = { x \in \mathbb X : \neg (x \in A) }$
|
||
|
||
<ul>
|
||
<li>If $x = { 1 }$ then $x’ = \emptyset$</li>
|
||
</ul></li>
|
||
</ul></li>
|
||
|
||
<li><p>Equality of sets: $A = B$ iff $x \in \mathbb X : (x \in A \iff x \in B)$</p></li>
|
||
|
||
<li><p>Difference of sets:</p>
|
||
|
||
<ul>
|
||
<li>$A \setminus B = { x \in \mathbb X : x \in A \land x \notin B } = A \cap B’$</li>
|
||
<li>Symmetric difference: $A \div B = (A \setminus B) \cup (B \setminus A)$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Laws of set algebra:</p>
|
||
|
||
<ul>
|
||
<li>$A \cup B = B \cup A , A \cap B = B \cap A$</li>
|
||
<li>$(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$</li>
|
||
<li>$(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ vice versa</li>
|
||
<li>$A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X$</li>
|
||
<li>$(A \cup B)’ = A’ \cap B’$ vice versa</li>
|
||
<li>$A \cup A’ = \mathbb X, A \cap A’ = \emptyset$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Note: ${ \emptyset } \neq \emptyset$, one is a set with one element, one is the empty set, no elements (${ }$)</p></li>
|
||
|
||
<li><p>Quip: ${ x \in \mathbb R : x^2 = -1} = \emptyset$</p></li>
|
||
</ul>
|
||
|
||
<h2 id="quantifiers">Quantifiers</h2>
|
||
|
||
<ul>
|
||
<li>$\phi$ - prepositional function: yields only true or false value</li>
|
||
<li>$\forall$ means “for all” and $\exists$ means “there exists”</li>
|
||
|
||
<li><p>$\forall$:</p>
|
||
|
||
<ul>
|
||
<li>Shorthand for $\land$ e.g. $(\forall x \in { 1, 2, … 10 }) x > 0 \equiv 1 > 0 \land 2 > 0 \land … 10 > 0$</li>
|
||
</ul></li>
|
||
|
||
<li><p>$\exists$:</p>
|
||
|
||
<ul>
|
||
<li>Shorthand for $\lor$ e.g. $(\exists x \in { 1, 2, … 10 }) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor … 10 > 5$</li>
|
||
</ul></li>
|
||
|
||
<li><p>$\neg \forall \equiv \exists$, vice versa</p></li>
|
||
|
||
<li><p>With quantifiers we can write logical statements e.g.</p>
|
||
|
||
<ul>
|
||
<li>$(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y$ is a statement and is false</li>
|
||
<li>$(\forall x) (\exists y) x > y$ is true</li>
|
||
<li>shortcut: $(\exists x, y) \equiv (\exists x) (\exists y)$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Quantifiers can be expressed in set language, sort of a definition in terms of sets:</p>
|
||
|
||
<ul>
|
||
<li>$(\forall x \in \mathbb{X}) (\phi(x)) \equiv { p \in \mathbb{X} : \phi(p) } = \mathbb{X}$</li>
|
||
<li>$(\exists x \in \mathbb{X}) (\phi(x)) \equiv { q \in \mathbb{X} : \phi(q) } \neq \emptyset$</li>
|
||
<li>$(\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( { p \in \mathbb{X} : \phi(p) } = \mathbb{X} )$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Order of quantifiers matters.</p></li>
|
||
</ul>
|
||
|
||
<h2 id="relations">Relations</h2>
|
||
|
||
<ul>
|
||
<li><p>Cartesian product:</p>
|
||
|
||
<ul>
|
||
<li>$A \times B = { (p, q) : p \in A \land q \in B }$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Def: A relation $R$ on a set $\mathbb X$ is a subset of $\mathbb X \times \mathbb X$ ($R \subseteq \mathbb X \times \mathbb X$)</p></li>
|
||
|
||
<li><p>Graph of a function $f()$: ${ (x, f(x) : x \in Dom(f) }$</p></li>
|
||
|
||
<li><p>Properties of:</p>
|
||
|
||
<ul>
|
||
<li>Reflexivity: $(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x$</li>
|
||
<li>Symmetricity: $[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$</li>
|
||
<li>Transitivity: $(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$</li>
|
||
<li>Antisymmetricity: $(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Equivalence relations:</p>
|
||
|
||
<ul>
|
||
<li>Def: $R \subseteq \mathbb X \times \mathbb X$ is said to be an equivalence relation <em>iff</em> $R$ is reflexive, symmetric and transitive.</li>
|
||
<li>Congruence modulo n: $p R q \equiv n | p - q$</li>
|
||
<li>Def R - and equivalence relation of $\mathbb X$: The <em>equivalence class</em> of an element $x \in \mathbb X$ is the set $[x]_R = { y \in \mathbb X : x R y }$
|
||
|
||
<ul>
|
||
<li>Every $x \in \mathbb X$ belongs to the equivalence class of some element $a$.</li>
|
||
<li>$(\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])$</li>
|
||
</ul></li>
|
||
</ul></li>
|
||
|
||
<li><p>Partitions</p>
|
||
|
||
<ul>
|
||
<li><p>A partition is a set containing subsets of some set $\mathbb X$ such that their collective symmetric difference equals $\mathbb X$. A partition of is a set ${ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X }$ such that:</p>
|
||
|
||
<ul>
|
||
<li>$(\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)$</li>
|
||
<li>$(\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)$</li>
|
||
</ul></li>
|
||
|
||
<li><p>${ A<em>i }</em>{i \in \mathbb I}$ is a partition <em>iff</em> there exists an equivalence relation $R$ on $\mathbb X$ such that:</p>
|
||
|
||
<ul>
|
||
<li>$(\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R$</li>
|
||
<li>$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$</li>
|
||
</ul></li>
|
||
|
||
<li><p>The quotient set: $\mathbb X / R = { [a] : a \in \mathbb X }$</p></li>
|
||
</ul></li>
|
||
</ul>
|
||
|
||
<h2 id="posets">Posets</h2>
|
||
|
||
<ul>
|
||
<li><p>Partial orders</p>
|
||
|
||
<ul>
|
||
<li>$\mathbb X$ is a set, $R \subseteq \mathbb X \times \mathbb X$</li>
|
||
|
||
<li><p>Def: $R$ is a partial order on $\mathbb X$ iff $R$ is:</p>
|
||
|
||
<ul>
|
||
<li>Reflexive</li>
|
||
<li>Antisymmetric</li>
|
||
<li>Transitive</li>
|
||
</ul></li>
|
||
|
||
<li><p>Def: $m \in \mathbb X$ is said to be:</p>
|
||
|
||
<ul>
|
||
<li>maximal element in $(\mathbb X, \preccurlyeq)$ iff $(\forall a \in \mathbb X) m \preccurlyeq a \implies m = a$</li>
|
||
<li>largest iff $(\forall a \in \mathbb X) (a \preccurlyeq m)$</li>
|
||
<li>minimal iff $(\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)$</li>
|
||
<li>smallest iff $(\forall a \in \mathbb X) (m \preccurlyeq a)$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Def: A partial order $R$ on $\mathbb X$ is said to be <em>“total”</em> iff $(\forall x, y \in \mathbb X) (x R y \lor y R x)$</p></li>
|
||
|
||
<li><p>Def: A subset $B$ of $\mathbb X$ is called a chain <em>“chain”</em> iff $B$ is totally ordered by $R$</p>
|
||
|
||
<ul>
|
||
<li>$C(\mathbb X)$ - the set of all chains in $(\mathbb X, R)$</li>
|
||
<li>A chain $D$ in $(\mathbb X, R)$ is called a maximal chain iff $D$ is a maximal element in $(C(\mathbb X), R)$</li>
|
||
<li>$K \subseteq \mathbb X$ is called an antichain in $(\mathbb X, R)$ iff $(\forall p, q \in K) (p R q \lor q R p \implies p = q)$</li>
|
||
<li>Def: $R$ is a partial order on $\mathbb X$, $R$ is called a <em>well</em> order iff $R$ is a total order on $X$ and every nonempty subset $A$ of $\mathbb X$ has the smallest element</li>
|
||
</ul></li>
|
||
</ul></li>
|
||
</ul>
|
||
|
||
<h2 id="induction">Induction</h2>
|
||
|
||
<ul>
|
||
<li>If $\phi$ is a propositional function defined on $\mathbb N$, if:
|
||
|
||
<ul>
|
||
<li>$\phi(1)$</li>
|
||
<li>$(\forall n \geq 1) \phi(n) \implies \phi(n+1)$</li>
|
||
<li>$(\forall k \geq 1) \phi(k)$</li>
|
||
</ul></li>
|
||
</ul>
|
||
|
||
<h2 id="functions">Functions</h2>
|
||
|
||
<ul>
|
||
<li>$f: \mathbb X \to \mathbb Y$</li>
|
||
|
||
<li><p>Def: $f \subseteq \mathbb X \times \mathbb Y$ is said to be a function if:</p>
|
||
|
||
<ul>
|
||
<li>$(\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))$</li>
|
||
<li>$(\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)$</li>
|
||
</ul></li>
|
||
|
||
<li><p>Types of functions $f: \mathbb X \to \mathbb Y$:</p>
|
||
|
||
<ul>
|
||
<li>$f$ is said to be an injection ( 1 to 1 function) iff $(\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$</li>
|
||
<li>$f$ is said to be a surjection (onto function) iff $(\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y$</li>
|
||
<li>If $f^{-1}$ is a function from $\mathbb Y \to \mathbb X$ then $f^{-1}$ is called the inverse function for $f$
|
||
|
||
<ul>
|
||
<li>Fact: $f^{-1}$ is a function iff $f$ is a <em>bijection</em> (1 to 1 and onto)</li>
|
||
</ul></li>
|
||
</ul></li>
|
||
|
||
<li><p>For some set $\mathbb A$ the image of $\mathbb A$ by $f$ is $f(\mathbb A) = { f(x) : x \in \mathbb A }$. We can also define the inverse of an image even when the function itself isn’t invertible: $f^{-1}(\mathbb A)$</p></li>
|
||
</ul>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
<footer class="footer">
|
||
<div class="footer__inner">
|
||
|
||
<div class="copyright copyright--user">
|
||
<span>© Abdulkadir Furkan Şanlı 2019 :: <a href="https://creativecommons.org/licenses/by-nd/4.0/">CC
|
||
BY-ND</a></span>
|
||
|
||
<span>:: theme by <a href="https://twitter.com/panr">panr</a></span>
|
||
</div>
|
||
</div>
|
||
</footer>
|
||
|
||
<script src="https://abdulocra.cy/assets/main.js"></script>
|
||
<script src="https://abdulocra.cy/assets/prism.js"></script>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<script>
|
||
MathJax = {
|
||
tex: {
|
||
inlineMath: [['$', '$'], ['\\(', '\\)']],
|
||
displayMath: [['$$', '$$'], ['\[', '\]']]
|
||
}
|
||
};
|
||
</script>
|
||
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js">
|
||
</script>
|
||
|
||
|
||
|
||
</div>
|
||
|
||
</body>
|
||
</html>
|