| 
						
					 | 
					 | 
					@@ -7,7 +7,7 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  <meta http-equiv="content-type" content="text/html; charset=utf-8">
 | 
					 | 
					 | 
					 | 
					  <meta http-equiv="content-type" content="text/html; charset=utf-8">
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
 | 
					 | 
					 | 
					 | 
					<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 | 
					 | 
					 | 
					 | 
					<meta name="description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 \(2=7\) statement \(x=5\) not a statement  In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
 | 
					 | 
					 | 
					 | 
					 $2=7$ statement $x=5$ not a statement  In logic we do not use the equals sign, we use the equivalence sign $\equiv$.
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc."/>
 | 
					 | 
					 | 
					 | 
					 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc."/>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="keywords" content=""/>
 | 
					 | 
					 | 
					 | 
					<meta name="keywords" content=""/>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="robots" content="noodp"/>
 | 
					 | 
					 | 
					 | 
					<meta name="robots" content="noodp"/>
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -32,7 +32,7 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="twitter:card" content="summary" />
 | 
					 | 
					 | 
					 | 
					<meta name="twitter:card" content="summary" />
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="twitter:title" content="Introduction to Discrete Mathematics :: abdulocracy's personal site — " />
 | 
					 | 
					 | 
					 | 
					<meta name="twitter:title" content="Introduction to Discrete Mathematics :: abdulocracy's personal site — " />
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="twitter:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 | 
					 | 
					 | 
					 | 
					<meta name="twitter:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 \(2=7\) statement \(x=5\) not a statement  In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
 | 
					 | 
					 | 
					 | 
					 $2=7$ statement $x=5$ not a statement  In logic we do not use the equals sign, we use the equivalence sign $\equiv$.
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
 | 
					 | 
					 | 
					 | 
					 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="twitter:site" content="https://abdulocra.cy/" />
 | 
					 | 
					 | 
					 | 
					<meta name="twitter:site" content="https://abdulocra.cy/" />
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta name="twitter:creator" content="" />
 | 
					 | 
					 | 
					 | 
					<meta name="twitter:creator" content="" />
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -43,7 +43,7 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta property="og:type" content="article" />
 | 
					 | 
					 | 
					 | 
					<meta property="og:type" content="article" />
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta property="og:title" content="Introduction to Discrete Mathematics :: abdulocracy's personal site — ">
 | 
					 | 
					 | 
					 | 
					<meta property="og:title" content="Introduction to Discrete Mathematics :: abdulocracy's personal site — ">
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta property="og:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 | 
					 | 
					 | 
					 | 
					<meta property="og:description" content="Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.  Propositional calculus  Comes from the linguistic concept that things can be either true or false. We should avoid variables when forming statements, as they may change the logical value.
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 \(2=7\) statement \(x=5\) not a statement  In logic we do not use the equals sign, we use the equivalence sign \(\equiv\).
 | 
					 | 
					 | 
					 | 
					 $2=7$ statement $x=5$ not a statement  In logic we do not use the equals sign, we use the equivalence sign $\equiv$.
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
 | 
					 | 
					 | 
					 | 
					 Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc." />
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta property="og:url" content="https://abdulocra.cy/posts/eidma/" />
 | 
					 | 
					 | 
					 | 
					<meta property="og:url" content="https://abdulocra.cy/posts/eidma/" />
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<meta property="og:site_name" content="Introduction to Discrete Mathematics" />
 | 
					 | 
					 | 
					 | 
					<meta property="og:site_name" content="Introduction to Discrete Mathematics" />
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -151,7 +151,9 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  
 | 
					 | 
					 | 
					 | 
					  
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  <div class="post-content">
 | 
					 | 
					 | 
					 | 
					  <div class="post-content">
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    <ul>
 | 
					 | 
					 | 
					 | 
					    
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.</li>
 | 
					 | 
					 | 
					 | 
					<li>Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.</li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul>
 | 
					 | 
					 | 
					 | 
					</ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -163,11 +165,11 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>We should avoid variables when forming statements, as they may change the logical value.</p>
 | 
					 | 
					 | 
					 | 
					<li><p>We should avoid variables when forming statements, as they may change the logical value.</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(2=7\)</span> statement</li>
 | 
					 | 
					 | 
					 | 
					<li>$2=7$ statement</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(x=5\)</span> not a statement</li>
 | 
					 | 
					 | 
					 | 
					<li>$x=5$ not a statement</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>In logic we do not use the equals sign, we use the equivalence sign <span  class="math">\(\equiv\)</span>.</p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>In logic we do not use the equals sign, we use the equivalence sign $\equiv$.</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).</p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).</p></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -180,147 +182,147 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>The operations done on propositional variables are called propositional connectives.</p>
 | 
					 | 
					 | 
					 | 
					<li><p>The operations done on propositional variables are called propositional connectives.</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Conjunction: <span  class="math">\(p \land q\)</span> is only true if both p and q are true <span  class="math">\((0001)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Conjunction: $p \land q$ is only true if both p and q are true $(0001)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Disjunction: <span  class="math">\(p \lor q\)</span> is only false if both p and q are false <span  class="math">\((0111)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Disjunction: $p \lor q$ is only false if both p and q are false $(0111)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Implication (material conditional): <span  class="math">\(p \implies q\)</span> is false only if p is true and q is false (truth table <span  class="math">\((1011)\)</span>)
 | 
					 | 
					 | 
					 | 
					<li>Implication (material conditional): $p \implies q$ is false only if p is true and q is false (truth table $(1011)$)
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(\equiv \neg p \lor q\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$\equiv \neg p \lor q$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Not necessarily connectives but unary operations:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Not necessarily connectives but unary operations:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Negation: Denoted by ~, <span  class="math">\(\neg\)</span> or NOT, negates the one input <span  class="math">\((10)\)</span>.</li>
 | 
					 | 
					 | 
					 | 
					<li>Negation: Denoted by ~, $\neg$ or NOT, negates the one input $(10)$.</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>A (propositional) formula is a "properly constructed" logical expression.</p>
 | 
					 | 
					 | 
					 | 
					<li><p>A (propositional) formula is a “properly constructed” logical expression.</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>e.g. <span  class="math">\(\neg[(p \lor q)] \land r\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>e.g. $\neg[(p \lor q)] \land r$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((p \land)\)</span> is not a formula, as <span  class="math">\(\land\)</span> requires 2 variables.</li>
 | 
					 | 
					 | 
					 | 
					<li>$(p \land)$ is not a formula, as $\land$ requires 2 variables.</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Logical equivalence: <span  class="math">\(\phi(p, q, k) \equiv \psi(p, q, k)\)</span>, logical value of <span  class="math">\(\phi\)</span> is equal to logical value of <span  class="math">\(\psi\)</span>.</li>
 | 
					 | 
					 | 
					 | 
					<li>Logical equivalence: $\phi(p, q, k) \equiv \psi(p, q, k)$, logical value of $\phi$ is equal to logical value of $\psi$.</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Commutativity: <span  class="math">\(p \land q \equiv q \land p\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Commutativity: $p \land q \equiv q \land p$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Associativity: <span  class="math">\((p \land q) \land r \equiv p \land (q \land r)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Associativity: $(p \land q) \land r \equiv p \land (q \land r)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Distributivity: <span  class="math">\(p \land (q \lor r) \equiv (p \land q) \lor (p \land r)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Distributivity: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
 | 
					 | 
					 | 
					 | 
					<li>Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(\neg(B \lor C)\)</span> can be written as <span  class="math">\(\neg B \land \neg C\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$\neg(B \lor C)$ can be written as $\neg B \land \neg C$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Double negation law: <span  class="math">\(\neg(\neg p) \equiv p\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Double negation law: $\neg(\neg p) \equiv p$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>De Morgan's laws: <span  class="math">\(\neg(p \land q) \equiv \neg p \lor \neg q\)</span> and <span  class="math">\(\neg(p \lor q) \equiv \neg p \land \neg q\)</span>.</p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>De Morgan’s laws: $\neg(p \land q) \equiv \neg p \lor \neg q$ and $\neg(p \lor q) \equiv \neg p \land \neg q$.</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>If and only if (<em>iff</em>): <span  class="math">\(p \iff p \equiv (p \implies q) \land (q \implies p)\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>If and only if (<em>iff</em>): $p \iff p \equiv (p \implies q) \land (q \implies p)$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Contraposition law:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Contraposition law:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((p \implies q) \equiv (\neg q \implies \neg p)\)</span> prove by contraposition
 | 
					 | 
					 | 
					 | 
					<li>$(p \implies q) \equiv (\neg q \implies \neg p)$ prove by contraposition
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((p \implies q) \equiv (\neg p \lor q)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(p \implies q) \equiv (\neg p \lor q)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Contradiction law:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Contradiction law:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(p \lor \neg p \equiv 1\)</span> and <span  class="math">\(p \land \neg p \equiv 0\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$p \lor \neg p \equiv 1$ and $p \land \neg p \equiv 0$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Tautology: <span  class="math">\(\phi (p, q, ... r)\)</span> is a tautology <em>iff</em> <span  class="math">\(\phi \equiv 1\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Tautology: $\phi (p, q, … r)$ is a tautology <em>iff</em> $\phi \equiv 1$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul>
 | 
					 | 
					 | 
					 | 
					</ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<h2 id="sets">Sets</h2>
 | 
					 | 
					 | 
					 | 
					<h2 id="sets">Sets</h2>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>We will consider subsets of universal set <span  class="math">\(\mathbb X\)</span></p>
 | 
					 | 
					 | 
					 | 
					<li><p>We will consider subsets of universal set $\mathbb X$</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(2^\mathbb X = \{ A : A \subseteq \mathbb X\}\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$2^\mathbb X = { A : A \subseteq \mathbb X}$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(2^\mathbb X = P(\mathbb X)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$2^\mathbb X = P(\mathbb X)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>All 2 object subsets of <span  class="math">\(\mathbb X\)</span>:  <span  class="math">\(P_2(\mathbb X)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>All 2 object subsets of $\mathbb X$:  $P_2(\mathbb X)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p><span  class="math">\(A \subset B \equiv\)</span> every element of A is an element of B <span  class="math">\(\equiv \{x \in \mathbb X : x \in A \implies x \in B\}\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>$A \subset B \equiv$ every element of A is an element of B $\equiv {x \in \mathbb X : x \in A \implies x \in B}$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Operations on sets:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Operations on sets:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Union - <span  class="math">\(\cup\)</span> - <span  class="math">\(A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Union - $\cup$ - $A \cup B = { x \in \mathbb X : x \in A \lor x \in B }$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Intersection - <span  class="math">\(\cap\)</span> - <span  class="math">\(A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Intersection - $\cap$ - $A \cap B = { x \in \mathbb X : x \in A \land x \in B }$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Complement - <span  class="math">\(A'\)</span> - <span  class="math">\(A' = \{ x \in \mathbb X : \neg (x \in A) \}\)</span>
 | 
					 | 
					 | 
					 | 
					<li>Complement - $A’$ - $A’ = { x \in \mathbb X : \neg (x \in A) }$
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>If <span  class="math">\(x = \{ 1 \}\)</span> then <span  class="math">\(x' = \emptyset\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>If $x = { 1 }$ then $x’ = \emptyset$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Equality of sets: <span  class="math">\(A = B\)</span> iff <span  class="math">\(x \in \mathbb X : (x \in A \iff x \in B)\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Equality of sets: $A = B$ iff $x \in \mathbb X : (x \in A \iff x \in B)$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Difference of sets:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Difference of sets:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$A \setminus B = { x \in \mathbb X : x \in A \land x \notin B } = A \cap B’$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Symmetric difference: <span  class="math">\(A \div B = (A \setminus B) \cup (B \setminus A)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Symmetric difference: $A \div B = (A \setminus B) \cup (B \setminus A)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Laws of set algebra:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Laws of set algebra:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(A \cup B = B \cup A , A \cap B = B \cap A\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$A \cup B = B \cup A , A \cap B = B \cap A$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)</span> vice versa</li>
 | 
					 | 
					 | 
					 | 
					<li>$(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ vice versa</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$A \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((A \cup B)' = A' \cap B'\)</span> vice versa</li>
 | 
					 | 
					 | 
					 | 
					<li>$(A \cup B)’ = A’ \cap B’$ vice versa</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(A \cup A' = \mathbb X, A \cap A' = \emptyset\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$A \cup A’ = \mathbb X, A \cap A’ = \emptyset$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Note: <span  class="math">\(\{ \emptyset \} \neq \emptyset\)</span>, one is a set with one element, one is the empty set, no elements (<span  class="math">\(\{ \}\)</span>)</p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Note: ${ \emptyset } \neq \emptyset$, one is a set with one element, one is the empty set, no elements (${ }$)</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Quip: <span  class="math">\(\{ x \in \mathbb R : x^2 = -1\} = \emptyset\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Quip: ${ x \in \mathbb R : x^2 = -1} = \emptyset$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul>
 | 
					 | 
					 | 
					 | 
					</ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<h2 id="quantifiers">Quantifiers</h2>
 | 
					 | 
					 | 
					 | 
					<h2 id="quantifiers">Quantifiers</h2>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(\phi\)</span> - prepositional function: yields only true or false value</li>
 | 
					 | 
					 | 
					 | 
					<li>$\phi$ - prepositional function: yields only true or false value</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(\forall\)</span> means "for all" and <span  class="math">\(\exists\)</span> means "there exists"</li>
 | 
					 | 
					 | 
					 | 
					<li>$\forall$ means “for all” and $\exists$ means “there exists”</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p><span  class="math">\(\forall\)</span>:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>$\forall$:</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Shorthand for <span  class="math">\(\land\)</span> e.g. <span  class="math">\((\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Shorthand for $\land$ e.g. $(\forall x \in { 1, 2, … 10 }) x > 0 \equiv 1 > 0 \land 2 > 0 \land … 10 > 0$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p><span  class="math">\(\exists\)</span>:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>$\exists$:</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Shorthand for <span  class="math">\(\lor\)</span> e.g. <span  class="math">\((\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Shorthand for $\lor$ e.g. $(\exists x \in { 1, 2, … 10 }) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor … 10 > 5$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p><span  class="math">\(\neg \forall \equiv \exists\)</span>, vice versa</p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>$\neg \forall \equiv \exists$, vice versa</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>With quantifiers we can write logical statements e.g.</p>
 | 
					 | 
					 | 
					 | 
					<li><p>With quantifiers we can write logical statements e.g.</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y\)</span> is a statement and is false</li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y$ is a statement and is false</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall x) (\exists y) x > y\)</span> is true</li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall x) (\exists y) x > y$ is true</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>shortcut: <span  class="math">\((\exists x, y) \equiv (\exists x) (\exists y)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>shortcut: $(\exists x, y) \equiv (\exists x) (\exists y)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Quantifiers can be expressed in set language, sort of a definition in terms of sets:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Quantifiers can be expressed in set language, sort of a definition in terms of sets:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall x \in \mathbb{X}) (\phi(x)) \equiv { p \in \mathbb{X} : \phi(p) } = \mathbb{X}$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\exists x \in \mathbb{X}) (\phi(x)) \equiv { q \in \mathbb{X} : \phi(q) } \neq \emptyset$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( { p \in \mathbb{X} : \phi(p) } = \mathbb{X} )$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Order of quantifiers matters.</p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Order of quantifiers matters.</p></li>
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -332,53 +334,53 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Cartesian product:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Cartesian product:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(A \times B = \{ (p, q) : p \in A \land q \in B \}\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$A \times B = { (p, q) : p \in A \land q \in B }$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Def: A relation <span  class="math">\(R\)</span> on a set <span  class="math">\(\mathbb X\)</span> is a subset of <span  class="math">\(\mathbb X \times \mathbb X\)</span> (<span  class="math">\(R \subseteq \mathbb X \times \mathbb X\)</span>)</p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Def: A relation $R$ on a set $\mathbb X$ is a subset of $\mathbb X \times \mathbb X$ ($R \subseteq \mathbb X \times \mathbb X$)</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Graph of a function <span  class="math">\(f()\)</span>: <span  class="math">\(\{ (x, f(x) : x \in Dom(f) \}\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Graph of a function $f()$: ${ (x, f(x) : x \in Dom(f) }$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Properties of:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Properties of:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Reflexivity: <span  class="math">\((\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Reflexivity: $(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Symmetricity: <span  class="math">\([ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Symmetricity: $[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Transitivity: <span  class="math">\((\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Transitivity: $(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Antisymmetricity: <span  class="math">\((\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Antisymmetricity: $(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Equivalence relations:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Equivalence relations:</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Def: <span  class="math">\(R \subseteq \mathbb X \times \mathbb X\)</span> is said to be an equivalence relation <em>iff</em> <span  class="math">\(R\)</span> is reflexive, symmetric and transitive.</li>
 | 
					 | 
					 | 
					 | 
					<li>Def: $R \subseteq \mathbb X \times \mathbb X$ is said to be an equivalence relation <em>iff</em> $R$ is reflexive, symmetric and transitive.</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Congruence modulo n: <span  class="math">\(p R q \equiv n | p - q\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>Congruence modulo n: $p R q \equiv n | p - q$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Def R - and equivalence relation of <span  class="math">\(\mathbb X\)</span>: The <em>equivalence class</em> of an element <span  class="math">\(x \in \mathbb X\)</span> is the set <span  class="math">\([x]_R = \{ y \in \mathbb X : x R y \}\)</span>
 | 
					 | 
					 | 
					 | 
					<li>Def R - and equivalence relation of $\mathbb X$: The <em>equivalence class</em> of an element $x \in \mathbb X$ is the set $[x]_R = { y \in \mathbb X : x R y }$
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Every <span  class="math">\(x \in \mathbb X\)</span> belongs to the equivalence class of some element <span  class="math">\(a\)</span>.</li>
 | 
					 | 
					 | 
					 | 
					<li>Every $x \in \mathbb X$ belongs to the equivalence class of some element $a$.</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Partitions</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Partitions</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>A partition is a set containing subsets of some set <span  class="math">\(\mathbb X\)</span> such that their collective symmetric difference equals <span  class="math">\(\mathbb X\)</span>. A partition of is a set <span  class="math">\(\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}\)</span> such that:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>A partition is a set containing subsets of some set $\mathbb X$ such that their collective symmetric difference equals $\mathbb X$. A partition of is a set ${ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X }$ such that:</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p><span  class="math">\(\{ A_i \}_{i \in \mathbb I}\)</span> is a partition <em>iff</em> there exists an equivalence relation <span  class="math">\(R\)</span> on <span  class="math">\(\mathbb X\)</span> such that:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>${ A<em>i }</em>{i \in \mathbb I}$ is a partition <em>iff</em> there exists an equivalence relation $R$ on $\mathbb X$ such that:</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>The quotient set: <span  class="math">\(\mathbb X / R = \{ [a] : a \in \mathbb X \}\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>The quotient set: $\mathbb X / R = { [a] : a \in \mathbb X }$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul>
 | 
					 | 
					 | 
					 | 
					</ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -388,9 +390,9 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Partial orders</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Partial orders</p>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(\mathbb X\)</span> is a set, <span  class="math">\(R \subseteq \mathbb X \times \mathbb X\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$\mathbb X$ is a set, $R \subseteq \mathbb X \times \mathbb X$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Def: <span  class="math">\(R\)</span> is a partial order on <span  class="math">\(\mathbb X\)</span> iff <span  class="math">\(R\)</span> is:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Def: $R$ is a partial order on $\mathbb X$ iff $R$ is:</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Reflexive</li>
 | 
					 | 
					 | 
					 | 
					<li>Reflexive</li>
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -398,24 +400,24 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Transitive</li>
 | 
					 | 
					 | 
					 | 
					<li>Transitive</li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Def: <span  class="math">\(m \in \mathbb X\)</span> is said to be:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Def: $m \in \mathbb X$ is said to be:</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>maximal element in <span  class="math">\((\mathbb X, \preccurlyeq)\)</span> iff <span  class="math">\((\forall a \in \mathbb X) m \preccurlyeq a \implies m = a\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>maximal element in $(\mathbb X, \preccurlyeq)$ iff $(\forall a \in \mathbb X) m \preccurlyeq a \implies m = a$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>largest iff <span  class="math">\((\forall a \in \mathbb X) (a \preccurlyeq m)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>largest iff $(\forall a \in \mathbb X) (a \preccurlyeq m)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>minimal iff <span  class="math">\((\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>minimal iff $(\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>smallest iff <span  class="math">\((\forall a \in \mathbb X) (m \preccurlyeq a)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>smallest iff $(\forall a \in \mathbb X) (m \preccurlyeq a)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Def: A partial order <span  class="math">\(R\)</span> on <span  class="math">\(\mathbb X\)</span> is said to be <em>"total"</em> iff <span  class="math">\((\forall x, y \in \mathbb X) (x R y \lor y R x)\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>Def: A partial order $R$ on $\mathbb X$ is said to be <em>“total”</em> iff $(\forall x, y \in \mathbb X) (x R y \lor y R x)$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Def: A subset <span  class="math">\(B\)</span> of <span  class="math">\(\mathbb X\)</span> is called a chain <em>"chain"</em> iff <span  class="math">\(B\)</span> is totally ordered by <span  class="math">\(R\)</span></p>
 | 
					 | 
					 | 
					 | 
					<li><p>Def: A subset $B$ of $\mathbb X$ is called a chain <em>“chain”</em> iff $B$ is totally ordered by $R$</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(C(\mathbb X)\)</span> - the set of all chains in <span  class="math">\((\mathbb X, R)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$C(\mathbb X)$ - the set of all chains in $(\mathbb X, R)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>A chain <span  class="math">\(D\)</span> in <span  class="math">\((\mathbb X, R)\)</span> is called a maximal chain iff <span  class="math">\(D\)</span> is a maximal element in <span  class="math">\((C(\mathbb X), R)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>A chain $D$ in $(\mathbb X, R)$ is called a maximal chain iff $D$ is a maximal element in $(C(\mathbb X), R)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(K \subseteq \mathbb X\)</span> is called an antichain in <span  class="math">\((\mathbb X, R)\)</span> iff <span  class="math">\((\forall p, q \in K) (p R q \lor q R p \implies p = q)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$K \subseteq \mathbb X$ is called an antichain in $(\mathbb X, R)$ iff $(\forall p, q \in K) (p R q \lor q R p \implies p = q)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Def: <span  class="math">\(R\)</span> is a partial order on <span  class="math">\(\mathbb X\)</span>, <span  class="math">\(R\)</span> is called a <em>well</em> order iff <span  class="math">\(R\)</span> is a total order on <span  class="math">\(X\)</span> and every nonempty subset <span  class="math">\(A\)</span> of <span  class="math">\(\mathbb X\)</span> has the smallest element</li>
 | 
					 | 
					 | 
					 | 
					<li>Def: $R$ is a partial order on $\mathbb X$, $R$ is called a <em>well</em> order iff $R$ is a total order on $X$ and every nonempty subset $A$ of $\mathbb X$ has the smallest element</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul>
 | 
					 | 
					 | 
					 | 
					</ul>
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -423,40 +425,40 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<h2 id="induction">Induction</h2>
 | 
					 | 
					 | 
					 | 
					<h2 id="induction">Induction</h2>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>If <span  class="math">\(\phi\)</span> is a propositional function defined on <span  class="math">\(\mathbb N\)</span>, if:
 | 
					 | 
					 | 
					 | 
					<li>If $\phi$ is a propositional function defined on $\mathbb N$, if:
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(\phi(1)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$\phi(1)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall n \geq 1) \phi(n) \implies \phi(n+1)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall n \geq 1) \phi(n) \implies \phi(n+1)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall k \geq 1) \phi(k)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall k \geq 1) \phi(k)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul>
 | 
					 | 
					 | 
					 | 
					</ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<h2 id="functions">Functions</h2>
 | 
					 | 
					 | 
					 | 
					<h2 id="functions">Functions</h2>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(f: \mathbb X \to \mathbb Y\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$f: \mathbb X \to \mathbb Y$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Def: <span  class="math">\(f \subseteq \mathbb X \times \mathbb Y\)</span> is said to be a function if:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Def: $f \subseteq \mathbb X \times \mathbb Y$ is said to be a function if:</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\((\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$(\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>Types of functions <span  class="math">\(f: \mathbb X \to \mathbb Y\)</span>:</p>
 | 
					 | 
					 | 
					 | 
					<li><p>Types of functions $f: \mathbb X \to \mathbb Y$:</p>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(f\)</span> is said to be an injection ( 1 to 1 function) iff <span  class="math">\((\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$f$ is said to be an injection ( 1 to 1 function) iff $(\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><span  class="math">\(f\)</span> is said to be a surjection (onto function) iff <span  class="math">\((\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y\)</span></li>
 | 
					 | 
					 | 
					 | 
					<li>$f$ is said to be a surjection (onto function) iff $(\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y$</li>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>If <span  class="math">\(f^{-1}\)</span> is a function from <span  class="math">\(\mathbb Y \to \mathbb X\)</span> then <span  class="math">\(f^{-1}\)</span> is called the inverse function for <span  class="math">\(f\)</span>
 | 
					 | 
					 | 
					 | 
					<li>If $f^{-1}$ is a function from $\mathbb Y \to \mathbb X$ then $f^{-1}$ is called the inverse function for $f$
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<ul>
 | 
					 | 
					 | 
					 | 
					<ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li>Fact: <span  class="math">\(f^{-1}\)</span> is a function iff <span  class="math">\(f\)</span> is a <em>bijection</em> (1 to 1 and onto)</li>
 | 
					 | 
					 | 
					 | 
					<li>Fact: $f^{-1}$ is a function iff $f$ is a <em>bijection</em> (1 to 1 and onto)</li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul></li>
 | 
					 | 
					 | 
					 | 
					</ul></li>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<li><p>For some set <span  class="math">\(\mathbb A\)</span> the image of <span  class="math">\(\mathbb A\)</span> by <span  class="math">\(f\)</span> is <span  class="math">\(f(\mathbb A) = \{ f(x) : x \in \mathbb A \}\)</span>. We can also define the inverse of an image even when the function itself isn't invertible: <span  class="math">\(f^{-1}(\mathbb A)\)</span></p></li>
 | 
					 | 
					 | 
					 | 
					<li><p>For some set $\mathbb A$ the image of $\mathbb A$ by $f$ is $f(\mathbb A) = { f(x) : x \in \mathbb A }$. We can also define the inverse of an image even when the function itself isn’t invertible: $f^{-1}(\mathbb A)$</p></li>
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					</ul>
 | 
					 | 
					 | 
					 | 
					</ul>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  </div>
 | 
					 | 
					 | 
					 | 
					  </div>
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					@@ -488,14 +490,17 @@
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css"
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
 | 
					 | 
					 | 
					 | 
					<script>
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js"
 | 
					 | 
					 | 
					 | 
					    MathJax = {
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz"
 | 
					 | 
					 | 
					 | 
					        tex: {
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    crossorigin="anonymous"></script>
 | 
					 | 
					 | 
					 | 
					            inlineMath: [['$', '$'], ['\\(', '\\)']],
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					<script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js"
 | 
					 | 
					 | 
					 | 
					            displayMath: [['$$', '$$'], ['\[', '\]']]
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"
 | 
					 | 
					 | 
					 | 
					        }
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    onload="renderMathInElement(document.body);"></script>
 | 
					 | 
					 | 
					 | 
					    };
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					</script>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js">
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					</script>
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					  
 | 
					 | 
					 | 
					 | 
					  
 | 
				
			
			
		
	
	
		
		
			
				
					
					| 
						
					 | 
					 | 
					 
 |