10 KiB
title | date | markup |
---|---|---|
Introduction to Discrete Mathematics | 2019-11-04 | pandoc |
- Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.
Propositional calculus
-
Comes from the linguistic concept that things can be either true or false.
-
We should avoid variables when forming statements, as they may change the logical value.
2=7
statementx=5
not a statement
-
In logic we do not use the equals sign, we use the equivalence sign
\equiv
. -
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).
-
When doing logic, we use propositional variables (e.g. p, q, r).
- Can be either true or false.
-
The operations done on propositional variables are called propositional connectives.
- Conjunction:
p \land q
is only true if both p and q are true(0001)
- Disjunction:
p \lor q
is only false if both p and q are false(0111)
- Implication (material conditional):
p \implies q
is false only if p is true and q is false (truth table(1011)
)\equiv \neg p \lor q
- Conjunction:
-
Not necessarily connectives but unary operations:
- Negation: Denoted by ~,
\neg
or NOT, negates the one input(10)
.
- Negation: Denoted by ~,
-
A (propositional) formula is a "properly constructed" logical expression.
- e.g.
\neg[(p \lor q)] \land r
(p \land)
is not a formula, as\land
requires 2 variables.- Logical equivalence:
\phi(p, q, k) \equiv \psi(p, q, k)
, logical value of\phi
is equal to logical value of\psi
. - Commutativity:
p \land q \equiv q \land p
- Associativity:
(p \land q) \land r \equiv p \land (q \land r)
- Distributivity:
p \land (q \lor r) \equiv (p \land q) \lor (p \land r)
- Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
\neg(B \lor C)
can be written as\neg B \land \neg C
- e.g.
-
Double negation law:
\neg(\neg p) \equiv p
-
De Morgan's laws:
\neg(p \land q) \equiv \neg p \lor \neg q
and\neg(p \lor q) \equiv \neg p \land \neg q
. -
If and only if (iff):
p \iff p \equiv (p \implies q) \land (q \implies p)
-
Contraposition law:
(p \implies q) \equiv (\neg q \implies \neg p)
prove by contraposition(p \implies q) \equiv (\neg p \lor q)
(\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)
-
Contradiction law:
p \lor \neg p \equiv 1
andp \land \neg p \equiv 0
-
Tautology:
\phi (p, q, ... r)
is a tautology iff\phi \equiv 1
Sets
-
We will consider subsets of universal set
\mathbb X
2^\mathbb X = \{ A : A \subseteq \mathbb X\}
2^\mathbb X = P(\mathbb X)
- All 2 object subsets of
\mathbb X
:P_2(\mathbb X)
-
A \subset B \equiv
every element of A is an element of B\equiv \{x \in \mathbb X : x \in A \implies x \in B\}
-
Operations on sets:
- Union -
\cup
-A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \}
- Intersection -
\cap
-A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \}
- Complement -
A'
-A' = \{ x \in \mathbb X : \neg (x \in A) \}
- If
x = \{ 1 \}
thenx' = \emptyset
- If
- Union -
-
Equality of sets:
A = B
iffx \in \mathbb X : (x \in A \iff x \in B)
-
Difference of sets:
A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'
- Symmetric difference:
A \div B = (A \setminus B) \cup (B \setminus A)
-
Laws of set algebra:
A \cup B = B \cup A , A \cap B = B \cap A
(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)
(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)
vice versaA \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X
(A \cup B)' = A' \cap B'
vice versaA \cup A' = \mathbb X, A \cap A' = \emptyset
-
Note:
\{ \emptyset \} \neq \emptyset
, one is a set with one element, one is the empty set, no elements (\{ \}
) -
Quip:
\{ x \in \mathbb R : x^2 = -1\} = \emptyset
Quantifiers
-
\phi
- prepositional function: yields only true or false value -
\forall
means "for all" and\exists
means "there exists" -
\forall
:- Shorthand for
\land
e.g.(\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0
- Shorthand for
-
\exists
:- Shorthand for
\lor
e.g.(\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5
- Shorthand for
-
\neg \forall \equiv \exists
, vice versa -
With quantifiers we can write logical statements e.g.
(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > y
is a statement and is false(\forall x) (\exists y) x > y
is true- shortcut:
(\exists x, y) \equiv (\exists x) (\exists y)
-
Quantifiers can be expressed in set language, sort of a definition in terms of sets:
(\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}
(\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset
(\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )
-
Order of quantifiers matters.
Relations
-
Cartesian product:
A \times B = \{ (p, q) : p \in A \land q \in B \}
-
Def: A relation
R
on a set\mathbb X
is a subset of\mathbb X \times \mathbb X
(R \subseteq \mathbb X \times \mathbb X
) -
Graph of a function
f()
:\{ (x, f(x) : x \in Dom(f) \}
-
Properties of:
- Reflexivity:
(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x
- Symmetricity:
[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ]
- Transitivity:
(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z)
- Antisymmetricity:
(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)
- Reflexivity:
-
Equivalence relations:
- Def:
R \subseteq \mathbb X \times \mathbb X
is said to be an equivalence relation iffR
is reflexive, symmetric and transitive. - Congruence modulo n:
p R q \equiv n | p - q
- Def R - and equivalence relation of
\mathbb X
: The equivalence class of an elementx \in \mathbb X
is the set[x]_R = \{ y \in \mathbb X : x R y \}
- Every
x \in \mathbb X
belongs to the equivalence class of some elementa
. (\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])
- Every
- Def:
-
Partitions
-
A partition is a set containing subsets of some set
\mathbb X
such that their collective symmetric difference equals\mathbb X
. A partition of is a set\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}
such that:(\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)
(\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)
-
\{ A_i \}_{i \in \mathbb I}
is a partition iff there exists an equivalence relationR
on\mathbb X
such that:(\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R
(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j
-
The quotient set:
\mathbb X / R = \{ [a] : a \in \mathbb X \}
-
Posets
- Partial orders
-
\mathbb X
is a set,R \subseteq \mathbb X \times \mathbb X
-
Def:
R
is a partial order on\mathbb X
iffR
is:- Reflexive
- Antisymmetric
- Transitive
-
Def:
m \in \mathbb X
is said to be:- maximal element in
(\mathbb X, \preccurlyeq)
iff(\forall a \in \mathbb X) m \preccurlyeq a \implies m = a
- largest iff
(\forall a \in \mathbb X) (a \preccurlyeq m)
- minimal iff
(\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m)
- smallest iff
(\forall a \in \mathbb X) (m \preccurlyeq a)
- maximal element in
-
Def: A partial order
R
on\mathbb X
is said to be "total" iff(\forall x, y \in \mathbb X) (x R y \lor y R x)
-
Def: A subset
B
of\mathbb X
is called a chain "chain" iffB
is totally ordered byR
C(\mathbb X)
- the set of all chains in(\mathbb X, R)
- A chain
D
in(\mathbb X, R)
is called a maximal chain iffD
is a maximal element in(C(\mathbb X), R)
K \subseteq \mathbb X
is called an antichain in(\mathbb X, R)
iff(\forall p, q \in K) (p R q \lor q R p \implies p = q)
- Def:
R
is a partial order on\mathbb X
,R
is called a well order iffR
is a total order onX
and every nonempty subsetA
of\mathbb X
has the smallest element
-
Induction
- If
\phi
is a propositional function defined on\mathbb N
, if: - $\phi(1)$ -(\forall n \geq 1) \phi(n) \implies \phi(n+1)
(\forall k \geq 1) \phi(k)
Functions
-
f: \mathbb X \to \mathbb Y
-
Def:
f \subseteq \mathbb X \times \mathbb Y
is said to be a function if:(\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))
(\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)
-
Types of functions
f: \mathbb X \to \mathbb Y
:f
is said to be an injection ( 1 to 1 function) iff(\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)
f
is said to be a surjection (onto function) iff(\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y
- If
f^{-1}
is a function from\mathbb Y \to \mathbb X
thenf^{-1}
is called the inverse function forf
- Fact:
f^{-1}
is a function ifff
is a bijection (1 to 1 and onto)
- Fact:
-
For some set
\mathbb A
the image of\mathbb A
byf
isf(\mathbb A) = \{ f(x) : x \in \mathbb A \}
. We can also define the inverse of an image even when the function itself isn't invertible:f^{-1}(\mathbb A)
Combinatorics
|\mathbb A|
size (number of elements) of\mathbb A
- Rule of addition:
- If
\mathbb A, \mathbb B \subseteq \mathbb X
and|\mathbb A|, |\mathbb B| \in \mathbb N
and\mathbb A \cap \mathbb B = \emptyset
then|\mathbb A \cup \mathbb B| = |\mathbb A| + |\mathbb B|
- Can be generalized as:
- If
(\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land \\
|\mathbb{A}_1|, |\mathbb{A}_2|, ..., |\mathbb{A}_n| \in \mathbb{N} \implies \\
(\forall i, j \in \{1, 2, ..., n \})(i \neq j \implies \mathbb{A}_i \cap \mathbb{A}_j = \emptyset)
- Rule of multiplication:
\mathbb{A}, \mathbb{B} \subseteq \mathbb{X}, |\mathbb{A} \times \mathbb{B}| = |\mathbb{A}| \cdot |\mathbb{B}|
- Can be generalized as:
(\forall n ) \mathbb{A}_1, \mathbb{A}_2, ..., \mathbb{A}_n \in \mathbb{X} \land |\mathbb{A}_i| \in \mathbb{N} \implies \\
|\mathbb{A}_1 \times \mathbb{A}_2 \times ... \times \mathbb{A}_n| = |\mathbb{A}_1| \cdot |\mathbb{A}_2| \cdot ... \cdot |\mathbb{A_n}|