9.4 KiB
+++ title = "Introduction to Discrete Mathematics" date = "2019-11-20" tags = ["university-notes"] markup = "pandoc" +++
- Mathematics without infinitely small, continuous mathematical objects. The mathematics of finite sets.
Propositional calculus
-
Comes from the linguistic concept that things can be either true or false.
-
We should avoid variables when forming statements, as they may change the logical value.
2=7statementx=5not a statement
-
In logic we do not use the equals sign, we use the equivalence sign
\equiv. -
Logical values (booleans) are denoted by either 0 or 1 (or t, f, etc.).
-
When doing logic, we use propositional variables (e.g. p, q, r).
- Can be either true or false.
-
The operations done on propositional variables are called propositional connectives.
- Conjunction:
p \land qis only true if both p and q are true(0001) - Disjunction:
p \lor qis only false if both p and q are false(0111) - Implication (material conditional):
p \implies qis false only if p is true and q is false (truth table(1011))\equiv \neg p \lor q
- Conjunction:
-
Not necessarily connectives but unary operations:
- Negation: Denoted by ~,
\negor NOT, negates the one input(10).
- Negation: Denoted by ~,
-
A (propositional) formula is a "properly constructed" logical expression.
- e.g.
\neg[(p \lor q)] \land r (p \land)is not a formula, as\landrequires 2 variables.- Logical equivalence:
\phi(p, q, k) \equiv \psi(p, q, k), logical value of\phiis equal to logical value of\psi. - Commutativity:
p \land q \equiv q \land p - Associativity:
(p \land q) \land r \equiv p \land (q \land r) - Distributivity:
p \land (q \lor r) \equiv (p \land q) \lor (p \land r) - Conjunctive normal form: every formula can be written as a conjunction of one or more disjunctions.
\neg(B \lor C)can be written as\neg B \land \neg C
- e.g.
-
Double negation law:
\neg(\neg p) \equiv p -
De Morgan's laws:
\neg(p \land q) \equiv \neg p \lor \neg qand\neg(p \lor q) \equiv \neg p \land \neg q. -
If and only if (iff):
p \iff p \equiv (p \implies q) \land (q \implies p) -
Contraposition law:
(p \implies q) \equiv (\neg q \implies \neg p)prove by contraposition(p \implies q) \equiv (\neg p \lor q)(\neg q \implies \neg p) \equiv (\neg (\neg q) \lor (\neg p) \equiv (q \lor \neg p) \equiv (\neg p \lor q)
-
Contradiction law:
p \lor \neg p \equiv 1andp \land \neg p \equiv 0
-
Tautology:
\phi (p, q, ... r)is a tautology iff\phi \equiv 1
Sets
-
We will consider subsets of universal set
\mathbb X2^\mathbb X = \{ A : A \subseteq \mathbb X\}2^\mathbb X = P(\mathbb X)- All 2 object subsets of
\mathbb X:P_2(\mathbb X)
-
A \subset B \equivevery element of A is an element of B\equiv \{x \in \mathbb X : x \in A \implies x \in B\} -
Operations on sets:
- Union -
\cup-A \cup B = \{ x \in \mathbb X : x \in A \lor x \in B \} - Intersection -
\cap-A \cap B = \{ x \in \mathbb X : x \in A \land x \in B \} - Complement -
A'-A' = \{ x \in \mathbb X : \neg (x \in A) \}- If
x = \{ 1 \}thenx' = \emptyset
- If
- Union -
-
Equality of sets:
A = Biffx \in \mathbb X : (x \in A \iff x \in B) -
Difference of sets:
A \setminus B = \{ x \in \mathbb X : x \in A \land x \notin B \} = A \cap B'- Symmetric difference:
A \div B = (A \setminus B) \cup (B \setminus A)
-
Laws of set algebra:
A \cup B = B \cup A , A \cap B = B \cap A(A \cup B) \cup C = A \cup (B \cup C), (A \cap B) \cap C = A \cap (B \cap C)(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)vice versaA \cap \emptyset, A \cap \mathbb X = A, A \cup \emptyset = A, A \cup \mathbb X = \mathbb X(A \cup B)' = A' \cap B'vice versaA \cup A' = \mathbb X, A \cap A' = \emptyset
-
Note:
\{ \emptyset \} \neq \emptyset, one is a set with one element, one is the empty set, no elements (\{ \}) -
Quip:
\{ x \in \mathbb R : x^2 = -1\} = \emptyset
Quantifiers
-
\phi- prepositional function: yields only true or false value -
\forallmeans "for all" and\existsmeans "there exists" -
\forall:- Shorthand for
\lande.g.(\forall x \in \{ 1, 2, ... 10 \}) x > 0 \equiv 1 > 0 \land 2 > 0 \land ... 10 > 0
- Shorthand for
-
\exists:- Shorthand for
\lore.g.(\exists x \in \{ 1, 2, ... 10 \}) x > 5 \equiv 1 > 5 \lor 2 > 5 \lor ... 10 > 5
- Shorthand for
-
\neg \forall \equiv \exists, vice versa -
With quantifiers we can write logical statements e.g.
(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) x > yis a statement and is false(\forall x) (\exists y) x > yis true- shortcut:
(\exists x, y) \equiv (\exists x) (\exists y)
-
Quantifiers can be expressed in set language, sort of a definition in terms of sets:
(\forall x \in \mathbb{X}) (\phi(x)) \equiv \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X}(\exists x \in \mathbb{X}) (\phi(x)) \equiv \{ q \in \mathbb{X} : \phi(q) \} \neq \emptyset(\exists x \in \mathbb{X}) (\neg \phi(x)) \equiv \neg ( \{ p \in \mathbb{X} : \phi(p) \} = \mathbb{X} )
-
Order of quantifiers matters.
Relations
-
Cartesian product:
A \times B = \{ (p, q) : p \in A \land q \in B \}
-
Def: A relation
Ron a set\mathbb Xis a subset of\mathbb X \times \mathbb X(R \subseteq \mathbb X \times \mathbb X) -
Graph of a function
f():\{ (x, f(x) : x \in Dom(f) \} -
Properties of:
- Reflexivity:
(\forall x \in \mathbb X ) (x, x) \in R \equiv (\forall x \in \mathbb X) x R x - Symmetricity:
[ (\forall x, y \in \mathbb X) (x, y) \in R \implies (y, x) \in R) ] \equiv [ (\forall x, y \in \mathbb X) ( x R y \implies y R x) ] - Transitivity:
(\forall x, y, z \in \mathbb X) (x R y \land y R z \implies x R z) - Antisymmetricity:
(\forall x, y \in \mathbb X) (x R y \land y R x \implies x = y)
- Reflexivity:
-
Equivalence relations:
- Def:
R \subseteq \mathbb X \times \mathbb Xis said to be an equivalence relation iffRis reflexive, symmetric and transitive. - Congruence modulo n:
p R q \equiv n | p - q - Def R - and equivalence relation of
\mathbb X: The equivalence class of an elementx \in \mathbb Xis the set[x]_R = \{ y \in \mathbb X : x R y \}- Every
x \in \mathbb Xbelongs to the equivalence class of some elementa. (\forall x, y \in \mathbb X) ([x] \cap [y] \neq \emptyset \iff [x] = [y])
- Every
- Def:
-
Partitions
-
A partition is a set containing subsets of some set
\mathbb Xsuch that their collective symmetric difference equals\mathbb X. A partition of is a set\{ A_i: i \in \mathbb I \land A_i \subseteq \mathbb X \}such that:(\forall x \in \mathbb X) (\exists j \in \mathbb I) (x \in A_j)(\forall i, j \in \mathbb I) (i \neq j \implies A_i \cap A_j = \emptyset)
-
\{ A_i \}_{i \in \mathbb I}is a partition iff there exists an equivalence relationRon\mathbb Xsuch that:(\forall i \in \mathbb I) (\exists x \in \mathbb X) A_i = [x]_R(\forall x \in \mathbb X) (\exists j \in \mathbb I) [x] = A_j
-
The quotient set:
\mathbb X / R = \{ [a] : a \in \mathbb X \}
-
Posets
- Partial orders
-
\mathbb Xis a set,R \subseteq \mathbb X \times \mathbb X -
Def:
Ris a partial order on\mathbb XiffRis:- Reflexive
- Antisymmetric
- Transitive
-
Def:
m \in \mathbb Xis said to be:- maximal element in
(\mathbb X, \preccurlyeq)iff(\forall a \in \mathbb X) m \preccurlyeq a \implies m = a - largest iff
(\forall a \in \mathbb X) (a \preccurlyeq m) - minimal iff
(\forall a \in \mathbb X) (a \preccurlyeq m \implies a = m) - smallest iff
(\forall a \in \mathbb X) (m \preccurlyeq a)
- maximal element in
-
Def: A partial order
Ron\mathbb Xis said to be "total" iff(\forall x, y \in \mathbb X) (x R y \lor y R x) -
Def: A subset
Bof\mathbb Xis called a chain "chain" iffBis totally ordered byRC(\mathbb X)- the set of all chains in(\mathbb X, R)- A chain
Din(\mathbb X, R)is called a maximal chain iffDis a maximal element in(C(\mathbb X), R) K \subseteq \mathbb Xis called an antichain in(\mathbb X, R)iff(\forall p, q \in K) (p R q \lor q R p \implies p = q)- Def:
Ris a partial order on\mathbb X,Ris called a well order iffRis a total order onXand every nonempty subsetAof\mathbb Xhas the smallest element
-
Induction
- If
\phiis a propositional function defined on\mathbb N, if: -\phi(1)-(\forall n \geq 1) \phi(n) \implies \phi(n+1)(\forall k \geq 1) \phi(k)
Functions
-
f: \mathbb X \to \mathbb Y -
Def:
f \subseteq \mathbb X \times \mathbb Yis said to be a function if:(\forall x \in \mathbb X)(\exists y \in \mathbb Y) (x, y) \in f(y = f(x))(\forall a \in \mathbb X)(\forall p, q \in \mathbb Y)((a, p) \in f \land (a, q) \in f \implies p = q)
-
Types of functions
f: \mathbb X \to \mathbb Y:fis said to be an injection ( 1 to 1 function) iff(\forall x_1, x_2 \in \mathbb X) x_1 \neq x_2 \implies f(x_1) \neq f(x_2)fis said to be a surjection (onto function) iff(\forall y \in \mathbb Y)(\exists x \in \mathbb X) f(x) = y- If
f^{-1}is a function from\mathbb Y \to \mathbb Xthenf^{-1}is called the inverse function forf- Fact:
f^{-1}is a function ifffis a bijection (1 to 1 and onto)
- Fact:
-
For some set
\mathbb Athe image of\mathbb Abyfisf(\mathbb A) = \{ f(x) : x \in \mathbb A \}. We can also define the inverse of an image even when the function itself isn't invertible:f^{-1}(\mathbb A)